scholarly journals Complete genome and plasmid sequence data of three Xanthomonas arboricola pv. corylina strains, the bacterium responsible for bacterial blight of hazelnut

2021 ◽  
Author(s):  
Joel F. Pothier ◽  
Monika Kałużna ◽  
Andjelka Prokić ◽  
Aleksa Obradovic ◽  
Fabio Rezzonico

Xanthomonas arboricola pv. corylina is the causal agent of bacterial blight of hazelnut. The bacterium is listed as A2 quarantine pathogen in Europe since 1978 and on the Regulated Non-Quarantine Pest (RNQP) list since 2020. Three strains from various geographic regions and isolated at different times were sequenced using a hybrid approach with short- and long-read technologies to generate closed genome and plasmid sequences in order to better understand the biology of this pathogen.

2020 ◽  
Vol 9 (47) ◽  
Author(s):  
Masahiro Toyokawa ◽  
Makoto Taniguchi ◽  
Kazuma Uesaka ◽  
Keiko Nishimura

ABSTRACT Nocardia wallacei is one of the members of the N. transvalensis complex which possess a highly unique susceptibility pattern. Here, we describe the closed complete genome sequence of the multidrug-resistant strain N. wallacei FMUON74, which was obtained using a hybrid approach combining Nanopore long-read sequencing and Illumina and DNBseq short-read sequencing.


Author(s):  
Pablo Dagoberto Nuñez Cerda ◽  
Cecilia Muster ◽  
María José Lisperguer ◽  
Ester Vargas ◽  
Sofia Bustos

The complete genome sequence of Xanthomonas arboricola pv. corylina A7 was obtained by a hybrid approach combining Pacbio and Illumina HiSeq sequencing data. A single circular chromosome of 5.1 mb with 65.47% G+C content was obtained. We identified 4344 coding sequences and some genes involved in copper resistance. To our knowledge, the data presented herein is the first report of high-quality whole genome of X. arboricola pv. corylina, isolated from infected hazelnut trees in southern Chile.


2021 ◽  
Vol 12 ◽  
Author(s):  
Steven P.T. Hooton ◽  
Alexander C.W. Pritchard ◽  
Karishma Asiani ◽  
Charlotte J. Gray-Hammerton ◽  
Dov J. Stekel ◽  
...  

Salmonella Typhimurium carrying the multidrug resistance (MDR) plasmid pMG101 was isolated from three burns patients in Boston United States in 1973. pMG101 was transferrable into other Salmonella spp. and Escherichia coli hosts and carried what was a novel and unusual combination of AMR genes and silver resistance. Previously published short-read DNA sequence of pMG101 showed that it was a 183.5Kb IncHI plasmid, where a Tn7-mediated transposition of pco/sil resistance genes into the chromosome of the E. coli K-12 J53 host strain had occurred. We noticed differences in streptomycin resistance and plasmid size between two stocks of E. coli K-12 J53 pMG101 we possessed, which had been obtained from two different laboratories (pMG101-A and pMG101-B). Long-read sequencing (PacBio) of the two strains unexpectedly revealed plasmid and chromosomal rearrangements in both. pMG101-A is a non-transmissible 383Kb closed-circular plasmid consisting of an IncHI2 plasmid sequence fused to an IncFI/FIIA plasmid. pMG101-B is a mobile closed-circular 154 Kb IncFI/FIIA plasmid. Sequence identity of pMG101-B with the fused IncFI/IncFIIA region of pMG101-A was >99%. Assembled host sequence reads of pMG101-B showed Tn7-mediated transposition of pco/sil into the E. coli J53 chromosome between yhiM and yhiN. Long read sequence data in combination with laboratory experiments have demonstrated large scale changes in pMG101. Loss of conjugation function and movement of resistance genes into the chromosome suggest that even under long-term laboratory storage, mobile genetic elements such as transposons and insertion sequences can drive the evolution of plasmids and host. This study emphasises the importance of utilising long read sequencing technologies of plasmids and host strains at the earliest opportunity.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Amine M. Boukerb ◽  
Julien Schaeffer ◽  
Joëlle Serghine ◽  
Gregory Carrier ◽  
Françoise S. Le Guyader ◽  
...  

As determined by a hybrid approach combining Oxford Nanopore MinION and Illumina MiniSeq sequence data, Campylobacter armoricus strain CA639 harbored a circular chromosome of 1,688,169 bp with a G+C content of 28.47% and two plasmids named pCA639-1 and pCA639-2, with lengths of 51,123 and 28,139 bp, and G+C contents of 26.5% and 28.45%, respectively.


Gut Pathogens ◽  
2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Dhiviya Prabaa Muthuirulandi Sethuvel ◽  
Balaji Veeraraghavan ◽  
Karthick Vasudevan ◽  
Naveen Kumar Devanga Ragupathi ◽  
Dhivya Murugan ◽  
...  

Abstract Shigella is ranked as the second leading cause of diarrheal disease worldwide. Though infection occurs in people of all ages, most of the disease burden constitutes among the children less than 5 years in low and middle income countries. Recent increasing incidence of drug resistant strains make this as a priority pathogen under the antimicrobial resistance surveillance by WHO. Despite this, only limited genomic studies on drug resistant Shigella exists. Here we report the first complete genome of clinical S. flexneri serotype 2a and S. sonnei strains using a hybrid approach of both long-read MinION (Oxford Nanopore Technologies) and short-read Ion Torrent 400 bp sequencing platforms. The utilization of this novel approach in the present study helped to identify the complete plasmid sequence of pSS1653 with structural genetic information of AMR genes such as sulII, tetA, tetR, aph(6)-Id and aph(3′’)-Ib. Identification of AMR genes in mobile elements in this human-restricted enteric pathogen is a potential threat for dissemination to other gut pathogens. The information on Shigella at genome level could help us to understand the genome dynamics of existing and emerging resistant clones.


2019 ◽  
Vol 8 (45) ◽  
Author(s):  
Hiroki Yu ◽  
Makoto Taniguchi ◽  
Kazuma Uesaka ◽  
Apirak Wiseschart ◽  
Kusol Pootanakit ◽  
...  

Staphylococcus arlettae is one coagulase-negative species in the bacterial genus Staphylococcus. Here, we describe the closed complete genome sequence of S. arlettae strain P2, which was obtained using a hybrid approach combining Oxford Nanopore long-read and Illumina MiSeq short-read sequencing data.


2018 ◽  
Vol 7 (19) ◽  
Author(s):  
Valérie Bouchez ◽  
Sarah Louise Baines ◽  
Sophie Guillot ◽  
Sylvain Brisse

Here, we describe the complete genome sequences of two Bordetella pertussis strains, FR5810, a clinical isolate recovered from the respiratory tract of an infant, and Tohama, a key reference strain for the species. Sequences were obtained using a hybrid approach combining Oxford Nanopore Technologies MinION and Illumina NextSeq 500 sequence data.


Author(s):  
Eric S Tvedte ◽  
Mark Gasser ◽  
Benjamin C Sparklin ◽  
Jane Michalski ◽  
Carl E Hjelmen ◽  
...  

Abstract The newest generation of DNA sequencing technology is highlighted by the ability to generate sequence reads hundreds of kilobases in length. Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) have pioneered competitive long read platforms, with more recent work focused on improving sequencing throughput and per-base accuracy. We used whole-genome sequencing data produced by three PacBio protocols (Sequel II CLR, Sequel II HiFi, RS II) and two ONT protocols (Rapid Sequencing and Ligation Sequencing) to compare assemblies of the bacteria Escherichia coli and the fruit fly Drosophila ananassae. In both organisms tested, Sequel II assemblies had the highest consensus accuracy, even after accounting for differences in sequencing throughput. ONT and PacBio CLR had the longest reads sequenced compared to PacBio RS II and HiFi, and genome contiguity was highest when assembling these datasets. ONT Rapid Sequencing libraries had the fewest chimeric reads in addition to superior quantification of E. coli plasmids versus ligation-based libraries. The quality of assemblies can be enhanced by adopting hybrid approaches using Illumina libraries for bacterial genome assembly or polishing eukaryotic genome assemblies, and an ONT-Illumina hybrid approach would be more cost-effective for many users. Genome-wide DNA methylation could be detected using both technologies, however ONT libraries enabled the identification of a broader range of known E. coli methyltransferase recognition motifs in addition to undocumented D. ananassae motifs. The ideal choice of long read technology may depend on several factors including the question or hypothesis under examination. No single technology outperformed others in all metrics examined.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ahmed Al Qaffas ◽  
Salvatore Camiolo ◽  
Mai Vo ◽  
Alexis Aguiar ◽  
Amine Ourahmane ◽  
...  

AbstractThe advent of whole genome sequencing has revealed that common laboratory strains of human cytomegalovirus (HCMV) have major genetic deficiencies resulting from serial passage in fibroblasts. In particular, tropism for epithelial and endothelial cells is lost due to mutations disrupting genes UL128, UL130, or UL131A, which encode subunits of a virion-associated pentameric complex (PC) important for viral entry into these cells but not for entry into fibroblasts. The endothelial cell-adapted strain TB40/E has a relatively intact genome and has emerged as a laboratory strain that closely resembles wild-type virus. However, several heterogeneous TB40/E stocks and cloned variants exist that display a range of sequence and tropism properties. Here, we report the use of PacBio sequencing to elucidate the genetic changes that occurred, both at the consensus level and within subpopulations, upon passaging a TB40/E stock on ARPE-19 epithelial cells. The long-read data also facilitated examination of the linkage between mutations. Consistent with inefficient ARPE-19 cell entry, at least 83% of viral genomes present before adaptation contained changes impacting PC subunits. In contrast, and consistent with the importance of the PC for entry into endothelial and epithelial cells, genomes after adaptation lacked these or additional mutations impacting PC subunits. The sequence data also revealed six single noncoding substitutions in the inverted repeat regions, single nonsynonymous substitutions in genes UL26, UL69, US28, and UL122, and a frameshift truncating gene UL141. Among the changes affecting protein-coding regions, only the one in UL122 was strongly selected. This change, resulting in a D390H substitution in the encoded protein IE2, has been previously implicated in rendering another viral protein, UL84, essential for viral replication in fibroblasts. This finding suggests that IE2, and perhaps its interactions with UL84, have important functions unique to HCMV replication in epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document