scholarly journals Graft Transmission Efficiencies and Multiplication of ‘Candidatus Liberibacter americanus’ and ‘Ca. Liberibacter asiaticus’ in Citrus Plants

2009 ◽  
Vol 99 (3) ◽  
pp. 301-306 ◽  
Author(s):  
S. A. Lopes ◽  
E. Bertolini ◽  
G. F. Frare ◽  
E. C. Martins ◽  
N. A. Wulff ◽  
...  

In Brazil ‘Candidatus Liberibacter asiaticus’ and ‘Ca. L. americanus’ cause huanglongbing (also known as greening), the most destructive citrus disease. A shift in pathogen prevalence was observed over time, with a disproportional increase in ‘Ca. L. asiaticus’ occurrence. Graft transmission experiments were used for a comparative study of both species using budsticks from symptomatic branches of field-affected trees as inoculum. The plants were inoculated with ‘Ca. L. asiaticus’ or ‘Ca. L. americanus’ alone, or simultaneously with both species. Symptom manifestation and conventional and quantitative real-time polymerase chain reaction were used for plant evaluations. ‘Ca. L. americanus’ was detected mainly in symptomatic plants and ‘Ca. L. asiaticus’ was detected in symptomatic plants as well as in infected plants prior to symptom manifestation. Transmission percentages varied from 54.7 to 88.0% for ‘Ca. L. asiaticus’ and 10.0 to 45.2% for ‘Ca. L. americanus’ in two experiments. In co-inoculated plants, 12.9% contained ‘Ca. L. americanus’ only, 40.3% contained ‘Ca. L. asiaticus’ only, and 19.3% contained both species. Average bacterial titers for ‘Ca. L. asiaticus’ and ‘Ca. L. americanus’, in log cells per gram of leaf midrib, were 6.42 and 4.87 for the experimental plants and 6.67 and 5.74 for the field trees used as the source of inoculum. The higher bacterial populations of the ‘Ca. L. asiaticus’-infected plants provided an explanation for the disproportional increase in field prevalence of this species over time, based on the greater likelihood for pathogen transmission by the insect vector.

Plant Disease ◽  
2008 ◽  
Vol 92 (11) ◽  
pp. 1547-1550 ◽  
Author(s):  
Michael J. Davis ◽  
Sachindra N. Mondal ◽  
Huiqin Chen ◽  
Michael E. Rogers ◽  
Ronald H. Brlansky

Huanglongbing (HLB), also known as citrus greening disease, is a devastating disease of citrus caused by phloem-limited bacteria that have not been grown in culture. Three species, ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. africanus’, and ‘Ca. L. americanus’, are known. ‘Ca. L. asiaticus’ and its insect vector, the psyllid Diaphorina citri, have been recently introduced into Florida. We attempted to isolate ‘Ca. L. asiaticus’ using media formulations developed in response to the growth of another bacterium that appears to be related to the liberibacters based on 16S rRNA gene identities. Cultures were obtained that were polymerase chain reaction (PCR) positive for ‘Ca. L. asiaticus’. However, transmission electron microscope examination of the culture, PCR using generic primers, and sequencing of the PCR products revealed the presence of other bacteria in the cultures. These were actinobacteria related to Propionibacterium acnes based on 16S rRNA identities. The co-cultures remained after attempts to purify the cultures by single-colony isolation, suggesting that the bacteria might be mutually beneficial to each other in culture. The co-cultures have survived more than 10 weekly passages to fresh medium. PCR using P. acnes-specific primers indicated that actinobacteria are common inhabitants of citrus and psyllids, whether or not ‘Ca. L. asiaticus’ is present.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 876-884 ◽  
Author(s):  
H. Hu ◽  
Avijit Roy ◽  
R. H. Brlansky

Citrus huanglongbing (HLB) is a century-old destructive disease which presents an unprecedented challenge to citrus industries worldwide. In Florida, HLB is associated with the phloem-limited bacterium ‘Candidatus Liberibacter asiaticus’ and is mainly transmitted by Asian citrus psyllid (Diaphorina citri). Quantification of the pathogen population in a host aids in investigation of virulence mechanisms and disease management. Recently a procedure was developed to detect live bacterial populations using a novel DNA-binding dye, propidium monoazide, in conjunction with real-time polymerase chain reaction (PMA-qPCR). Chinese box orange (Severinia buxifolia) is a common ornamental present in Florida which could host D. citri and ‘Ca. L. asiaticus’. For 20 months, the change of the live ‘Ca. L. asiaticus’ populations in graft- and psyllid-transmitted Valencia sweet orange (Citrus sinensis ‘Valencia’) and S. buxifolia plants was monitored by PMA-qPCR. Our results showed that the live ‘Ca. L. asiaticus’ population was significantly lower in the months of December, January, and February than the rest of the year in both hosts. No statistically significant pattern in the total bacterial population was observed in either host. This pattern may indicate a seasonal growth of ‘Ca. L. asiaticus’ along with the growth of both plants. These new findings should provide useful information on HLB management.


HortScience ◽  
2014 ◽  
Vol 49 (3) ◽  
pp. 367-377 ◽  
Author(s):  
Ute Albrecht ◽  
David G. Hall ◽  
Kim D. Bowman

Candidatus Liberibacter asiaticus (Las) is a phloem-limited bacterium associated with huanglongbing (HLB), one of the most destructive diseases of citrus in Florida and other citrus-producing countries. Natural transmission of Las occurs by the psyllid vector Diaphorina citri, but transmission can also occur through grafting with diseased budwood. As a result of the difficulty of maintaining Las in culture, screening of citrus germplasm for HLB resistance often relies on graft inoculation as the mode of pathogen transmission. This study evaluates transmission efficiencies and HLB progression in graft-inoculated and psyllid-inoculated citrus under greenhouse and natural conditions in the field. Frequencies of transmission in graft-inoculated greenhouse-grown plants varied between experiments and were as high as 90% in susceptible sweet orange plants 6 to 12 months after inoculation. Transmission frequency in a tolerant Citrus × Poncirus genotype (US-802) was 31% to 75%. In contrast, transmission of Las after controlled psyllid inoculation did not exceed 38% in any of four experiments in this study. Whereas the time from inoculation to detection of Las by polymerase chain reaction (PCR) was faster in psyllid-inoculated US-802 plants compared with graft-inoculated US-802 plants, it was similar in graft- and psyllid-inoculated sweet orange plants. HLB symptom expression was indistinguishable in graft- and psyllid-inoculated plants but was not always associated with the number of bacteria in affected leaves. The highest number of Las genomes per gram leaf tissue measured in sweet orange plants was one to four × 107 in graft-inoculated plants and one to two × 107 in psyllid-inoculated plants. Highest numbers measured in tolerant US-802 plants were one to three × 106 and two to six × 106, respectively. Compared with artificial inoculation in a greenhouse setting, natural inoculation of field-grown sweet orange trees occurred at a much slower pace, requiring more than 1 year for infection incidence to reach 50% and a minimum of 3 years to reach 100%.


Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1080-1086 ◽  
Author(s):  
Greg McCollum ◽  
Mark Hilf ◽  
Mike Irey ◽  
Weiqi Luo ◽  
Tim Gottwald

Huanglongbing (HLB) disease is the most serious threat to citrus production worldwide and, in the last decade, has devastated the Florida citrus industry. In the United States, HLB is associated with the phloem-limited α-proteobacterium ‘Candidatus Liberibacter asiaticus’ and its insect vector, the Asian citrus psyllid (ACP; Diaphorina citri). Significant effort is being put forth to develop novel citrus germplasm that has a lower propensity to succumb to HLB than do currently available varieties. Effective methods of screening citrus germplasm for susceptibility to HLB are essential. In this study, we exposed small, grafted trees of 16 citrus types to free-ranging ACP vectors and ‘Ca. L. asiaticus’ inoculum in the greenhouse. During 45 weeks of exposure to ACP, the cumulative incidence of ‘Ca. L. asiaticus’ infection was 70%. Trees of Citrus macrophylla and C. medica were most susceptible to ‘Ca. L. asiaticus’, with 100% infection by the end of the test period in three trials, while the complex genetic hybrids ‘US 1-4-59’ and ‘Fallglo’ consistently were least susceptible, with approximately 30% infection. Results obtained in this greenhouse experiment showed good agreement with trends observed in the orchard, supporting the validity of our approach for screening citrus germplasm for susceptibility to HLB.


Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1295-1300 ◽  
Author(s):  
Lianming Lu ◽  
Baoping Cheng ◽  
Jinai Yao ◽  
Aitian Peng ◽  
Danchao Du ◽  
...  

In this study, two polyclonal antibodies were produced against the Omp protein of ‘Candidatus Liberibacter asiaticus’. First, omp genes were sequenced to exhibit 99.9% identity among 137 isolates collected from different geographical origins. Then, two peptides containing the hydrophobic polypeptide-transport-associated (POTRA) domain and β-barrel domain, respectively, were identified on Omp protein. After that, these two peptides were overexpressed in Escherichia coli and purified by affinity chromatography to immunize the white rabbits. Finally, the antiserum was purified by affinity chromatography. The two Omp antibodies gave positive results (0.454 to 0.633, 1:1,600 dilution) in enzyme-linked immunosorbent assay against ‘Ca. L. asiaticus’-infected samples collected from different geographical origins but revealed negative results against other pathogen-infected, nutrient-deficient and healthy samples. The antibody against the POTRA domain of Omp protein could detect ‘Ca. L. asiaticus’ in 45.7% of the symptomatic samples compared with a 56.2% detection rate with a polymerase chain reaction assay. These new antibodies will provide a very useful supplement to the current approaches to ‘Ca. L. asiaticus’ detection and also provide powerful research tools for tracking distribution of this pathogen in vivo.


2021 ◽  
Author(s):  
Marcus Vinicius Merfa e Silva ◽  
Eduarda Regina Fischer ◽  
Mariana de Souza e Silva ◽  
Carolina Sardinha Francisco ◽  
Helvécio Coletta-Filho ◽  
...  

Huanglongbing (HLB) is currently the most devastating disease of citrus worldwide. Both bacteria ‘Candidatus Liberibacter asiaticus’ (CLas) and ‘Ca. Liberibacter americanus’ (CLam) are associated with HLB in Brazil, but with a strong prevalence of CLas over CLam. Conventionally, HLB management focuses on controlling the insect vector population (Diaphorina citri; also known as Asian citrus psyllid – ACP) by spraying insecticides, an approach demonstrated to be mostly ineffective. Thus, development of novel more efficient HLB control strategies is required. The multifunctional bacterial outer membrane protein OmpA is involved in several molecular processes between bacteria and their hosts and has been suggested as a target for bacterial control. Curiously, OmpA is absent in CLam in comparison to CLas, suggesting a possible role on host-interaction. Therefore, in the current study, we have treated ACPs with different OmpA-derived peptides aiming to evaluate the acquisition of CLas by the insect vector. Treatment of psyllids with 5 µM of Pep1, Pep3, Pep5 and Pep6 in artificial diet significantly reduced the acquisition of CLas, while increasing the concentration of Pep5 and Pep6 to 50 µM abolished this process. In addition, in planta treatment with 50 µM of Pep6 also significantly decreased the acquisition of CLas and sweet orange plants stably absorbed and maintained this peptide for as long as three months post the final application. Together, our results demonstrate the promising use of OmpA-derived peptides as a novel biotechnological tool to control CLas.


2008 ◽  
Vol 98 (5) ◽  
pp. 592-599 ◽  
Author(s):  
Satyanarayana Tatineni ◽  
Uma Shankar Sagaram ◽  
Siddarame Gowda ◽  
Cecile J. Robertson ◽  
William O. Dawson ◽  
...  

Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide, and is caused by a phloem-limited fastidious prokaryotic α-proteobacterium that is yet to be cultured. In this study, a combination of traditional polymerase chain reaction (PCR) and real-time PCR targeting the putative DNA polymerase and 16S rDNA sequence of ‘Candidatus Liberibacter asiaticus,’ respectively, were used to examine the distribution and movement of the HLB pathogen in the infected citrus tree. We found that ‘Ca. Liberibacter asiaticus’ was distributed in bark tissue, leaf midrib, roots, and different floral and fruit parts, but not in endosperm and embryo, of infected citrus trees. Quantification analysis of the HLB bacterium indicated that it was distributed unevenly in planta and ranged from 14 to 137,031 cells/μg of total DNA in different tissues. A relatively high concentration of ‘Ca. Liberibacter asiaticus’ was observed in fruit peduncles. Our data from greenhouse-infected plants also indicated that ‘Ca. Liberibacter asiaticus’ was transmitted systemically from infection site to different parts of the plant. Understanding the distribution and movement of the HLB bacterium inside an individual citrus tree is critical for discerning its virulence mechanism and to develop management strategies for HLB.


2013 ◽  
Vol 48 (11) ◽  
pp. 1440-1448 ◽  
Author(s):  
Rafaella Teles Arantes Felipe ◽  
Francisco de Assis Alves Mourão Filho ◽  
Silvio Aparecido Lopes ◽  
Beatriz Madalena Januzzi Mendes ◽  
Maurel Behling ◽  
...  

The objective of this work was to evaluate the reaction of four sweet orange cultivars expressing the attacin A gene to 'Candidatus Liberibacter asiaticus' (Las) infection, a bacterium associated to huanglongbing (HLB) disease. Transgenic sweet orange plants of Hamlin, Natal, Pêra, and Valência cultivars, as well as nontransgenic controls received inocula by grafting budwood sections of HLB-infected branches. Disease progression was evaluated through observations of leaf symptoms and by polymerase chain reaction (PCR) analysis, eight months after inoculation. A completely randomized design was used, with four experiments (one for each cultivar) performed simultaneously. Bacteria title was estimated by quantitative PCR (qPCR). HLB symptoms and Las titers were present in nontransgenic and transgenic plants expressing the attacin A gene of the four sweet orange cultivars, eight months after bacteria inoculation. Five transgenic lines (transformation events) of 'Pêra' sweet orange expressing the attacin A gene have significantly lower Las titers in comparison with nontransgenic plants of this cultivar.


Metabolites ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 477
Author(s):  
Nabil Killiny ◽  
Shelley E. Jones ◽  
Faraj Hijaz ◽  
Abdelaziz Kishk ◽  
Yulica Santos-Ortega ◽  
...  

The citrus industry at present is severely affected by huanglongbing disease (HLB). HLB is caused by the supposed bacterial pathogen “Candidatus Liberibacter asiaticus” and is transmitted by the insect vector, the Asian citrus psyllid, Diaphorina citri Kuwayama. Developing new citrus hybrids to improve HLB management is much needed. In this study, we investigated the metabolomic profiles of three new hybrids produced from the cross of C2-5-12 Pummelo (Citrus maxima (L.) Osbeck) × pollen from Citrus latipes. The hybrids were selected based on leaf morphology and seedling vigor. The selected hybrids exhibited compact and upright tree architecture as seen in C. latipes. Hybrids were verified by simple sequence repeat markers, and were subjected to metabolomic analysis using gas chromatography-mass spectrometry. The volatile organic compounds (VOCs) and polar metabolites profiling also showed that the new hybrids were different from their parents. Interestingly, the levels of stored VOCs in hybrid II were higher than those observed in its parents and other hybrids. The level of most VOCs released by hybrid II was also higher than that released from its parents. Additionally, the preference assay showed that hybrid II was more attractive to D. citri than its parents and other hybrids. The leaf morphology, compact and upright architecture of hybrid II, and its attraction to D. citri suggest that it could be used as a windbreak and trap tree for D. citri (double duty), once its tolerance to HLB disease is confirmed. Our results showed that metabolomic analysis could be successfully used to understand the biochemical mechanisms controlling the interaction of D. citri with its host plants.


2019 ◽  
Vol 113 (2) ◽  
pp. 589-595 ◽  
Author(s):  
Freddy Ibanez ◽  
Lukasz L Stelinski

Abstract Huanglongbing, a highly destructive disease of citrus species, is associated with a fastidious, gram-negative, phloem-limited bacteria (Candidatus Liberibacter spp.). In Florida, the causative agent of Huanglongbing (HLB) is C. Liberibacter asiaticus (CLas) and it is transmitted by the insect vector, Asian citrus psyllid (Diaphorina citri Kuwayama). Previous investigations have revealed systemic infection of CLas with an erratic and uneven distribution of pathogen in tree phloem. However, previous investigations did not consider the potential impact of plant vegetative growth on presence/absence of CLas in planta. Our objectives were to determine: 1) the effect of vegetative growth of Citrus sinensis (L.) Osbeck cv Valencia on detection of CLas in mature leaves, and 2) the impact of CLas inoculation frequency on progression of CLas titer in citrus leaves through the first year of infection. Temporal dynamics of CLas detection were associated with vegetative flush growth. Surprisingly, there was no difference in CLas titer detected between plants exposed to infected vectors for a one-time 7 d inoculation access period, as compared with plants exposed to continuously breeding CLas-infected insects over the course of an entire year of plant infection. Our results suggest that the CLas bacterium is transported through phloem during annual movement of carbon compounds needed for vegetative plant growth, including transportation from roots to mature leaves. These results highlight the importance of vegetative growth on temporal dynamics of CLas in citrus, and suggest a critical role of the sink-source interaction on presence/absence of CLas in leaves.


Sign in / Sign up

Export Citation Format

Share Document