scholarly journals Association of Cellulytic Enzyme Activities in Eucalyptus Mulches with Biological Control of Phytophthora cinnamomi

2001 ◽  
Vol 91 (9) ◽  
pp. 847-855 ◽  
Author(s):  
A. J. Downer ◽  
J. A. Menge ◽  
E. Pond

A series of samples were taken from mulched and unmulched trees starting at the surface of mulch or soil to a 15 cm soil depth, forming a vertical transect. Saprophytic fungi isolated from the soil samples on rose bengal medium and surveyed visually were most abundant in mulches and at the interface of mulch and soil (P < 0.05). Microbial activity as assayed by the hydrolysis of fluorescein diacetate was significantly greater in mulch layers than in soils. Cellulase and laminarinase enzyme activities were greatest in upper mulch layers and rapidly decreased in soil layers (P < 0.05). Enzyme activities against Phytophthora cinnamomi cell walls were significantly greater in mulch than in soil layers. When Phytophthora cinnamomi was incubated in situ at the various transect depths, it was most frequently lysed at the interface between soil and mulch (P < 0.001). Roots that grew in mulch layers were significantly less infected with Phytophthora cinnamomi than roots formed in soil layers. In mulched soil, roots were commonly formed at the mulch-soil interface where Phytophthora populations were reduced, whereas roots in unmulched soil were numerous at the 7.5 cm depth where Phytophthora cinnamomi was prevalent. Enzyme activities were significantly and positively correlated with each other, microbial activity, and saprophytic fungal populations, but significantly and negatively correlated with Phytophthora recovery.

1998 ◽  
Vol 79 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Pekka Huhtanen ◽  
Aila Vanhatalo ◽  
Tuomo Varvikko

Three ruminally cannulated non-lactating dairy cows were used to investigate the effects of six different bag cloth types with pore size (μm): free surface area (%) ratios of 200: 45, 41: 33, 16: 5, 10: 2, 6: 5 and 1: 2 respectively on the disappearance of grass silage DM and neutral-detergent fibre (NDF), and on particle-associated carboxymethylcellulase (EC3.2.1.4; CMCase) and xylanase (EC3.2.1.8) activties extracted from feed residues. Another objective was to compare microbial activity inside the bags and in rumen ingesta. Rumen incubation periods were 3, 6, 12, 24, 48 and 96 h. DM and NDF disappearance and particle-associated enzyme activities were greatly reduced with the smaller pore size and/or open surface area. Re-analysing some of the data as a 2 x 2 factorial (pore size x free surface area) indicated that, generally, free surface area rather than pore size affected the disappearance of feed components and particle-associated enzyme activities. Enzyme activities were highly correlated with NDF disappearance at 6–48 h of incubation. Cumulative area under CMCase and xylanase activity curves explained 0·79 and 0·88 of the variation in NDF disappearance when different cloth type and 6–48 h incubation data were combined. Weighted mean enzyme activities inside the bags were less than 0·35 those in rumen ingesta. The highest activity values inside the bags (24 or 48 h) were less than 0·50 those found in rumen ingesta. The lower microbial activity inside the bags explains the slower rates of NDF digestion reported within situtechniques than with rumen evacuation techniques. The general assumption of similar microbial activity inside the bags and in rumen ingesta is not justified by the present results, and caution must be taken in interpretingin situresults quantitatively for feed evaluation systems.


1961 ◽  
Vol 38 (4) ◽  
pp. 545-562 ◽  
Author(s):  
L. Kecskés ◽  
F. Mutschler ◽  
I. Glós ◽  
E. Thán ◽  
I. Farkas ◽  
...  

ABSTRACT 1. An indirect paperchromatographic method is described for separating urinary oestrogens; this consists of the following steps: acidic hydrolysis, extraction with ether, dissociation of phenol-fractions with partition between the solvents. Previous purification of phenol fraction with the aid of paperchromatography. The elution of oestrogen containing fractions is followed by acetylation. Oestrogen acetate is isolated by re-chromatography. The chromatogram was developed after hydrolysis of the oestrogens 'in situ' on the paper. The quantity of oestrogens was determined indirectly, by means of an iron-reaction, after the elution of the iron content of the oestrogen spot, which was developed by the Jellinek-reaction. 2. The method described above is satisfactory for determining urinary oestrogen, 17β-oestradiol and oestriol, but could include 16-epioestriol and other oestrogenic metabolites. 3. The sensitivity of the method is 1.3–1.6 μg/24 hours. 4. The quantitative and qualitative determination of urinary oestrogens with the above mentioned method was performed in 50 pregnant and 9 non pregnant women, and also in 2 patients with granulosa cell tumour.


2013 ◽  
Vol 85 (17) ◽  
pp. 8121-8126 ◽  
Author(s):  
Britta Opitz ◽  
Andreas Prediger ◽  
Christian Lüder ◽  
Marrit Eckstein ◽  
Lutz Hilterhaus ◽  
...  

1975 ◽  
Vol 64 (3) ◽  
pp. 586-607 ◽  
Author(s):  
N Simionescu ◽  
M Siminoescu ◽  
G E Palade

Two heme-peptides (HP) of about 20-A diameter (heme-undecapeptide [H11P], mol wt approximately 1900 and heme-octapeptide [H8P], mol wt approximately 1550), obtained by enzymic hydrolysis of cytochrome c, were sued as probe molecules in muscle capillaries (rat diaphragm). They were localized in situ by a perixidase reaction, enhanced by the addition of imidazole to the incubation medium. Chromatography of plasma samples showed that HPs circulate predominantly as monomers for the duration of the experiments and are bound by aldehyde fixatives to plasma proteins to the extent of approximately 50% (H8P) to approximately 95% (H11P). Both tracers cross the endothelium primarily via plasmalemmal vesicles which become progressively labeled (by reaction product) from the blood front to the tissue front of the endothelium, in three successive resolvable phases. By the end of each phase the extent of labeling reaches greater than 90% of the corresponding vesicle population. Labeled vesicles appear as either isolated units or chains which form patent channels across the endothelium. The patency of these channels was checked by specimen tilting and graphic analysis of their images. No evidence was found for early or preferential marking of the intercellular junctions and spaces by reaction product. It is concluded that the channels are the most likely candidate for structural equivalents of the small pores of the capillary wall since they are continuous, water-filled passages, and are provided with one or more strictures of less than 100 A. Their frequency remains to be established by future work.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 551-558 ◽  
Author(s):  
G. A. Ridge ◽  
S. N. Jeffers ◽  
W. C. Bridges ◽  
S. A. White

The goal of this study was to develop a procedure that could be used to evaluate the potential susceptibility of aquatic plants used in constructed wetlands to species of Phytophthora commonly found in nurseries. V8 agar plugs from actively growing cultures of three or four isolates of Phytophthora cinnamomi, P. citrophthora, P. cryptogea, P. nicotianae, and P. palmivora were used to produce inocula. In a laboratory experiment, plugs were placed in plastic cups and covered with 1.5% nonsterile soil extract solution (SES) for 29 days, and zoospore presence and activity in the solution were monitored at 2- or 3-day intervals with a rhododendron leaf disk baiting bioassay. In a greenhouse experiment, plugs of each species of Phytophthora were placed in plastic pots and covered with either SES or Milli-Q water for 13 days during both summer and winter months, and zoospore presence in the solutions were monitored at 3-day intervals with the baiting bioassay and by filtration. Zoospores were present in solutions throughout the 29-day and 13-day experimental periods but consistency of zoospore release varied by species. In the laboratory experiment, colonization of leaf baits decreased over time for some species and often varied among isolates within a species. In the greenhouse experiment, bait colonization decreased over time in both summer and winter, varied among species of Phytophthora in the winter, and was better in Milli-Q water. Zoospore densities in solutions were greater in the summer than in the winter. Decreased zoospore activities for some species of Phytophthora were associated with prolonged temperatures below 13 or above 30°C in the greenhouse. Zoospores from plugs were released consistently in aqueous solutions for at least 13 days. This procedure can be used to provide in situ inocula for the five species of Phytophthora used in this study so that aquatic plant species can be evaluated for potential susceptibility.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1174 ◽  
Author(s):  
Honglin Zhu ◽  
Tingxi Liu ◽  
Baolin Xue ◽  
Yinglan A. ◽  
Guoqiang Wang

Soil moisture distribution plays a significant role in soil erosion, evapotranspiration, and overland flow. Infiltration is a main component of the hydrological cycle, and simulations of soil moisture can improve infiltration process modeling. Different environmental factors affect soil moisture distribution in different soil layers. Soil moisture distribution is influenced mainly by soil properties (e.g., porosity) in the upper layer (10 cm), but by gravity-related factors (e.g., slope) in the deeper layer (50 cm). Richards’ equation is a widely used infiltration equation in hydrological models, but its homogeneous assumptions simplify the pattern of soil moisture distribution, leading to overestimates. Here, we present a modified Richards’ equation to predict soil moisture distribution in different layers along vertical infiltration. Two formulae considering different controlling factors were used to estimate soil moisture distribution at a given time and depth. Data for factors including slope, soil depth, porosity, and hydraulic conductivity were obtained from the literature and in situ measurements and used as prior information. Simulations were compared between the modified and the original Richards’ equations and with measurements taken at different times and depths. Comparisons with soil moisture data measured in situ indicated that the modified Richards’ equation still had limitations in terms of reproducing soil moisture in different slope positions and rainfall periods. However, compared with the original Richards’ equation, the modified equation estimated soil moisture with spatial diversity in the infiltration process more accurately. The equation may benefit from further solutions that consider various controlling factors in layers. Our results show that the proposed modified Richards’ equation provides a more effective approach to predict soil moisture in the vertical infiltration process.


Sign in / Sign up

Export Citation Format

Share Document