scholarly journals Structural studies on the intact and the soluble C‐terminal region of E. Coli signal peptidase, a membrane protein

2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Monika Musial‐Siwek ◽  
Debra A. Kendall ◽  
Philip L. Yeagle
Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


2000 ◽  
Vol 33 (4) ◽  
pp. 528-536 ◽  
Author(s):  
Isabel Mayo ◽  
Paz Arizti ◽  
Albert Pares ◽  
Joaquin Oliva ◽  
Rita Alvarez Doforno ◽  
...  

2015 ◽  
Vol 108 (2) ◽  
pp. 323a ◽  
Author(s):  
Aravindan Varadarajan ◽  
Felix Oswald ◽  
Yves J.M. Bollen ◽  
Erwin J.G. Peterman

2018 ◽  
Vol 16 (14) ◽  
pp. 2489-2498 ◽  
Author(s):  
Muhammad Ehsan ◽  
Yang Du ◽  
Iago Molist ◽  
Alpay B. Seven ◽  
Parameswaran Hariharan ◽  
...  

A vitamin E-based novel agent (i.e., VEG-3) was markedly effective at stabilizing and visualizing a G-protein coupled receptor (GPCR)-Gs complex.


1990 ◽  
Vol 110 (4) ◽  
pp. 999-1011 ◽  
Author(s):  
R G Paterson ◽  
R A Lamb

The NH2 terminus of the F1 subunit of the paramyxovirus SV5 fusion protein (fusion related external domain; FRED) is a hydrophobic domain that is implicated as being involved in mediating membrane fusion. We have examined the ability of the FRED to function as a combined signal/anchor domain by substituting it for the natural NH2-terminal signal/anchor domain of a model type II integral membrane protein: the hybrid protein (NAF) was expressed in eukaryotic cells. The FRED was shown to act as a signal sequence, targeting NAF to the lumen of the ER, by the fact that NAF acquired N-linked carbohydrate chains. Alkali fractionation of microsomes indicated that NAF is a soluble protein in the lumen of the ER, and the results of NH2-terminal sequence analysis showed that the FRED is cleaved at a site predicted to be recognized by signal peptidase. NAF was found to be efficiently secreted (t1/2 approximately 90 min) from the cell. By using a combination of sedimentation velocity centrifugation and immunoprecipitation assays using polyclonal and conformation-specific monoclonal antibodies it was found that extracellular NAF consisted of a mixture of monomers, disulfide-linked dimers, and tetramers. The majority of the extracellular NAF molecules were not reactive with the conformation-specific monoclonal antibodies, suggesting they were not folded in a native form and that only the NAF tetramers had matured to a native conformation such that they exhibited NA activity. The available data indicate that NAF is transported intracellularly in multiple oligomeric and conformational forms.


2020 ◽  
Author(s):  
Alyson R. Warr ◽  
Rachel T. Giorgio ◽  
Matthew K. Waldor

The function of cvpA, a bacterial gene predicted to encode an inner membrane protein, is largely unknown. Early studies in E. coli linked cvpA to Colicin V secretion and recent work revealed that it is required for robust intestinal colonization by diverse enteric pathogens. In enterohemorrhagic E. coli (EHEC), cvpA is required for resistance to the bile salt deoxycholate (DOC). Here, we carried out genome-scale transposon-insertion mutagenesis and spontaneous suppressor analysis to uncover cvpA’s genetic interactions and identify common pathways that rescue the sensitivity of a ΔcvpA EHEC mutant to DOC. These screens demonstrated that mutations predicted to activate the σE-mediated extracytoplasmic stress response bypass the ΔcvpA mutant’s susceptibility to DOC. Consistent with this idea, we found that deletions in rseA and msbB and direct overexpression of rpoE restored DOC resistance to the ΔcvpA mutant. Analysis of the distribution of CvpA homologs revealed that this inner membrane protein is conserved across diverse bacterial phyla, in both enteric and non-enteric bacteria that are not exposed to bile. Together, our findings suggest that CvpA plays a role in cell envelope homeostasis in response to DOC and similar stress stimuli in diverse bacterial species. IMPORTANCE Several enteric pathogens, including Enterohemorrhagic E. coli (EHEC), require CvpA to robustly colonize the intestine. This inner membrane protein is also important for secretion of a colicin and EHEC resistance to the bile salt deoxycholate (DOC), but its function is unknown. Genetic analyses carried out here showed that activation of the σE-mediated extracytoplasmic stress response restored the resistance of a cvpA mutant to DOC, suggesting that CvpA plays a role in cell envelope homeostasis. The conservation of CvpA across diverse bacterial phyla suggests that this membrane protein facilitates cell envelope homeostasis in response to varied cell envelope perturbations.


Sign in / Sign up

Export Citation Format

Share Document