scholarly journals Diallyl Sulfide Inhibits Lipid Peroxidation by increasing Superoxide dismutase and Glutathione S Transferase Gene Expression in the Liver of Male Sprague Dawley Rats.

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Oneil George Newell ◽  
Selina Darling‐Reed ◽  
Ronald Thomas
Open Medicine ◽  
2009 ◽  
Vol 4 (2) ◽  
pp. 184-191 ◽  
Author(s):  
Kerim Cayir ◽  
Ali Karadeniz ◽  
Abdulkadir Yildirim ◽  
Yildiray Kalkan ◽  
Akar Karakoc ◽  
...  

AbstractThe present study was designed to investigate the protective effects of L-carnitine (LC) on changes in the levels of lipid peroxidation and endogenous antioxidants induced by cisplatin (cis-diamminedichloroplatinum II, CDDP) in the liver and kidney tissues of rats. Twenty-four Sprague Dawley rats were equally divided into four groups of six rats each: control, cisplatin, L-carnitine, and L-carnitine plus cisplatin. The degree of protection produced by L-carnitine was evaluated by determining the level of malondialdehyde (MDA). The activity of glutathione (GSH), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and superoxide dismutase (SOD) were estimated from liver and kidney homogenates, and the liver and kidney were histologically examined as well. L-carnitine elicited significant liver and kidney protective activity by decreasing the level of lipid peroxidation (MDA) and elevating the activity of GSH, GSHPx, GST, and SOD. Furthermore, these biochemical observations were supported by histological findings. In conclusion, the present study indicates a significant role for reactive oxygen species (ROS) and their relation to liver and kidney dysfunction, and points to the therapeutic potential of LC in CDDP-induced liver and kidney toxicity.


Author(s):  
MOHAMMAD IQBAL ◽  
MUHAMMAD DAWOOD SHAH ◽  
SENTY VUN-SANG ◽  
RIANA BINTI AWANG SAMAN

Objective: The pathogenesis of various liver injuries involves oxidative damage. This research was planned to examine the effects of Mereemia borneensis extract on hepatic oxidative damage caused by carbon tetrachloride (CCl4) in rats. Methods: Sprague Dawley rats were exposed to M. borneensis (125 and 250 mg/kg b. wt.) once daily for 14 d followed by two doses of CCl4 (1.2 ml/kg b. wt.). After 2 w, the rats were sacrificed and hepatoprotective analysis was done. Results: Orally administration of CCl4 enhances serum transaminase (ALT; alanine transaminase and AST; aspartate transaminase), γ-glutamyl transpeptidase, lipid peroxidation, reduction in glutathione, catalase, glutathione reductase, glutathione peroxidase, quinone reductase and glutathione S-transferase. Pretreatment of rats with M. borneensis at 125 and 250 mg/kg body weight significantly reduced levels of ALT, AST, γ-glutamyl transpeptidase and lipid peroxidation of CCl4 treated rats. Pretreatment with M. borneensis against rats treated with CCl4, hepatic enzymatic and non-enzymatic antioxidant molecules have increased significantly. A decreased histopathological change in the liver is further evidence of the protective effect of M. borneensis. Conclusion: Our data suggest that M. borneensis can be a potential hepatoprotective agent in preventing or treating degenerative diseases that involve oxidative stress.


2019 ◽  
Vol 44 (2) ◽  
pp. 77-87
Author(s):  
Koichi Ishida ◽  
Liyue Qin ◽  
Ting Wang ◽  
Ying Lei ◽  
Weiwei Hu ◽  
...  

Acupuncture manipulations are clinically important to traditional Chinese medicine, yet the biological mechanisms have not been fully understood. This study aimed to investigate continuous stimulation-induced gene expression changes at stimulated and non-stimulated adjacent acupoints in the same meridian. Catgut embedding into acupoint (CEP) was conducted at acupoint Yanglingquan (gall bladder meridian of foot-shaoyang 34, GB34) of Sprague Dawley rats once or continuously for eight weeks, and gene expression changes at GB34 were assessed by gene chip array analysis 72 h after the last CEP treatment. A total of 688 genes exhibited opposite changes in expression between the two treatments, and 1,336 genes were regulated only by the eight-week CEP treatment. Ingenuity Pathway Analysis revealed that among these differentially regulated genes by one-time and eight-week CEP treatment, insulin-like growth factor-1 pathway and integrin-linked kinase pathway, and Wnt/~ catenin signaling pathway match the observed gene changes to predicted up/down regulation patterns. Upstream analysis further predicted six molecules, namely, tumor necrosis factor, interleukin 1~, interleukin la, kallikrein-related peptidase 5, protein kinase Ca, and catenin ~1. On the other hand, continuous eight-week CEP stimulation at acupoint Xuanzhong (GB39) caused similar changes in the expression of 32 genes at acupoints GB34 and Fengshi (GB31) on the same meridian. Taken together, our results provide the first molecular evidence for the local acupoints' mechanisms for acupoint sensitization theory, and implicate the existence of signaling pathways, either direct or indirect, between acupoints within the meridian GB.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Alejandra Zúñiga-Muñoz ◽  
Rodrigo Velázquez Espejel ◽  
Alfredo Cabrera-Orefice ◽  
...  

We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.


Endocrinology ◽  
2008 ◽  
Vol 149 (9) ◽  
pp. 4329-4335 ◽  
Author(s):  
Edith Sánchez ◽  
Praful S. Singru ◽  
Runa Acharya ◽  
Monica Bodria ◽  
Csaba Fekete ◽  
...  

To explore the effect of refeeding on recovery of TRH gene expression in the hypothalamic paraventricular nucleus (PVN) and its correlation with the feeding-related neuropeptides in the arcuate nucleus (ARC), c-fos immunoreactivity (IR) in the PVN and ARC 2 h after refeeding and hypothalamic TRH, neuropeptide Y (NPY) and agouti-related protein (AGRP) mRNA levels 4, 12, and 24 h after refeeding were studied in Sprague-Dawley rats subjected to prolonged fasting. Despite rapid reactivation of proopiomelanocortin neurons by refeeding as demonstrated by c-fos IR in ARC α-MSH-IR neurons and ventral parvocellular subdivision PVN neurons, c-fos IR was present in only 9.7 ± 1.1% hypophysiotropic TRH neurons. Serum TSH levels remained suppressed 4 and 12 h after the start of refeeding, returning to fed levels after 24 h. Fasting reduced TRH mRNA compared with fed animals, and similar to TSH, remained suppressed at 4 and 12 h after refeeding, returning toward normal at 24 h. AGRP and NPY gene expression in the ARC were markedly elevated in fasting rats, AGRP mRNA returning to baseline levels 12 h after refeeding and NPY mRNA remaining persistently elevated even at 24 h. These data raise the possibility that refeeding-induced activation of melanocortin signaling exerts differential actions on its target neurons in the PVN, an early action directed at neurons that may be involved in satiety, and a later action on hypophysiotropic TRH neurons involved in energy expenditure, potentially mediated by sustained elevations in AGRP and NPY. This response may be an important homeostatic mechanism to allow replenishment of depleted energy stores associated with fasting.


2020 ◽  
Vol 12 (4) ◽  
pp. 298
Author(s):  
Dana N. Abdelrahim ◽  
Hamed R. Takruri ◽  
Khalid M. Al-Ismail

This study aimed to determine the effect of Ruta chalepensis L. plant on liver enzymes, liver weight and lipid peroxidation using rats toxified with paracetamol. An animal experiment was conducted using five groups of Sprague Dawley rats, 9 rats each. The groups were fed: Normal diet, high cholesterol diet, with or without the plant or the liver toxicant paracetamol (PCM). The experiment lasted six weeks; at the end of the sixth week; a single dose of 3 g paracetamol/kg body weight was given for rats of two groups, then blood and liver samples were collected. The hepatoprotective effect of the plant was evaluated using aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin (TBL) levels as indicators. This study finds that the groups to which plant and PCM were given had significantly lower MDA levels in comparison with other groups that didn’t receive plant before PCM toxification. Tested liver enzymes levels were significantly (P < 0.05) lowered by the introduction of plant to the diet. Introducing PCM without ingestion of plant in the diet significantly (P < 0.05) increased the rats absolute liver weight. It is concluded that the use of Ruta chalepensis L. plant significantly lowered hepatic toxicity as indicated by the liver enzymes levels. Also, the plant lowered the MDA level and liver weight. The ingestion of the plant can be significantly protective against hepatic injury.


2009 ◽  
Vol 189 ◽  
pp. S137 ◽  
Author(s):  
Tao Chen ◽  
Kevin Hickling ◽  
Carolin Hamberger ◽  
Angela Mally ◽  
Kevin Chipman

Sign in / Sign up

Export Citation Format

Share Document