scholarly journals Electrode implantation trauma (EIT) initiates fibrosis by over‐expression of TGF‐β1 and activation of the Wnt/β‐catenin pathway in an in vitro model of cochlear implantation

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Esperanza Bas Infante ◽  
Chhavi Gupta ◽  
Bradley Goldstein ◽  
Thomas R. Van De Water
2007 ◽  
Vol 15 ◽  
pp. B133
Author(s):  
I. Izal Azcárate ◽  
P. Ripalda Cemboráin ◽  
C.A. Acosta Olivo ◽  
F. Forriol Campos

2021 ◽  
Vol 19 ◽  
pp. 205873922110144
Author(s):  
Zhi Li ◽  
Weitao Zhai ◽  
Qinggang Sun ◽  
Shipeng Hu ◽  
Yinghui Ma ◽  
...  

Osteoarthritis is a common chronic bone and joint disease, which is characterized by degenerative changes and destruction of articular cartilage, secondary hyperostosis. This study aimed to investigate the clinical severity and mechanism of S100A12 in patients with osteoarthritis. Serum samples were obtained from patients with osteoarthritis or normal volunteer in Minhang Branch of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine affiliated to Shanghai University of Traditional Chinese Medicine (Shanghai, China). C57BL/6J mice performed Resection of the medial collateral ligament and medial meniscus as mice model. MC3T3-E1 cells were induced with 100 ng of LPS as vitro model. The serum level of S100A12 was increased in patients with osteoarthritis. Similarly, S100A12 levels of serum and bone tissue from mice model of osteoarthritis were also higher than those of sham group. Over-expression of S100A12 promoted inflammation levels while down-regulation of S100A12 decreased inflammation levels in in vitro model of osteoarthritis. NLRP3 is an important target of S100A12 in pro-inflammation effects of osteoarthritis. NLRP3 was involved in the effects of S100A12 on inflammation in in vitro model of osteoarthritis. S100A12 also accelerated inflammation by NLRP3 in mice model of osteoarthritis. We conclude that serum S100A12 levels was a possible clinical severity, open inflammation of osteoarthritis model by NLRP3 and its receptors may be effective in preventing the development of osteoarthritis.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51411 ◽  
Author(s):  
Youssef M. Farhat ◽  
Alaa A. Al-Maliki ◽  
Tony Chen ◽  
Subhash C. Juneja ◽  
Edward M. Schwarz ◽  
...  

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Rachael D. Wright ◽  
Paraskevi Dimou ◽  
Sarah J. Northey ◽  
Michael W. Beresford

Abstract Background Lupus nephritis (LN) affects up to 80% of juvenile-onset systemic lupus erythematosus patients. Mesangial cells (MCs) comprise a third of the glomerular cells and are key contributors to fibrotic changes within the kidney. This project aims to identify the roles of MCs in an in vitro model of LN. Methods Conditionally immortalised MCs were treated with pro-inflammatory cytokines or with patient sera in an in vitro model of LN and assessed for their roles in inflammation and fibrosis. Results MCs were shown to produce pro-inflammatory cytokines in response to a model of the inflammatory environment in LN. Further the cells expressed increased levels of mRNA for extracellular matrix (ECM) proteins (COL1A1, COL1A2, COL4A1 and LAMB1), matrix metalloproteinase enzymes (MMP9) and tissue inhibitors of matrix metalloproteinases (TIMP1). Treatment of MCs with serum from patients with active LN was able to induce a similar, albeit milder phenotype. Treatment of MCs with cytokines or patient sera was able to induce secretion of TGF-β1, a known inducer of fibrotic changes. Inhibition of TGF-β1 actions through SB-431542 (an activin A receptor type II-like kinase (ALK5) inhibitor) was able to reduce these responses suggesting that the release of TGF-β1 plays a role in these changes. Conclusions MCs contribute to the inflammatory environment in LN by producing cytokines involved in leukocyte recruitment, activation and maturation. Further the cells remodel the ECM via protein deposition and enzymatic degradation. This occurs through the actions of TGF-β1 on its receptor, ALK5. This may represent a potential therapeutic target for treatment of LN-associated fibrosis.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3448
Author(s):  
Munmun Chakraborty ◽  
Prity Sahay ◽  
Aparna Rao

The lack of an animal model or an in vitro model limits experimental options for studying temporal molecular events in pseudoexfoliation syndrome (PXF), an age related fibrillopathy causing trabecular meshwork damage and glaucoma. Our goal was to create a workable in vitro model of PXF using primary human TM (HTM) cell lines simulating human disease. Primary HTM cells harvested from healthy donors (n = 3), were exposed to various concentrations (5 ng/mL, 10 ng/mL, 15 ng/mL) of transforming growth factor-beta1 (TGF-β1) for different time points. Morphological change of epithelial–mesenchymal transition (EMT) was analyzed by direct microscopic visualization and immunoblotting for EMT markers. Expression of pro-fibrotic markers were analyzed by quantitative RT-PCR and immunoblotting. Cell viability and death in treated cells was analyzed using FACS and MTT assay. Protein complex and amyloid aggregate formation was analyzed by Immunofluorescence of oligomer11 and amyloid beta fibrils. Effect of these changes with pharmacological inhibitors of canonical and non-canonical TGF pathway was done to analyze the pathway involved. The expression of pro-fibrotic markers was markedly upregulated at 10 ng/mL of TGF-β1 exposure at 48–72 h of exposure with associated EMT changes at the same time point. Protein aggregates were seen maximally at these time points that were found to be localized around the nucleus and in the extracellular matrix (ECM). EMT and pro-fibrotic expression was differentially regulated by different canonical and non-canonical pathways suggesting complex regulatory mechanisms. This in vitro model using HTM cells simulated the main characteristics of human disease in PXF like pro-fibrotic gene expression, EMT, and aggregate formation.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Hongjie Yuan ◽  
Shibin Du ◽  
Youliang Deng ◽  
Xiaoqing Xu ◽  
Qian Zhang ◽  
...  

Abstract Background: MicroRNA can regulate gene expression, and participate in multiple vital activities, such as inflammation, oxidative stress epigenetic modification, cell proliferation, and apoptosis. It plays an important role in the genesis and development of cardiovascular disease. Objective: To assess the role of microRNA-208a in ketamine-induced cardiotoxicity. Methods: All rats were randomly selected into two groups: sham and model groups. After fixed, all rats in the model group was intraperitoneally (IP) injected with 100 mg/kg of ketamine. Heart samples were stained with HE assay. Total RNAs from serum were used to hybridize with the SurePrint G3 Rat Whole Genome GE 8×60 K Microarray G4858A platform. Results: In the rat model with ketamine-induced cardiotoxicity, microRNA-208a expression was increased. Then, over-expression of microRNA-208a increased inflammation and oxidative stress in vitro model. However, down-regulation of microRNA-208a decreased inflammation and oxidative stress in vitro model. Over-expression of microRNA-208a suppressed CHD9 and Notch1, and induced p65 protein expression in vitro model. Overexpression of CHD9 reduced the effects of microRNA-208a on inflammation and oxidative stress in heart cell through Notch/p65 signal pathways. Notch1 activation reduced the effects of microRNA-208a on inflammation and oxidative stress in heart cell through p65 signal pathways. Conclusion: MicroRNA-208a may be a potential biomarker for ketamine-induced cardiotoxicity through inflammation and oxidative stress by Notch/NF-κB signal pathways by CHD9.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Sign in / Sign up

Export Citation Format

Share Document