scholarly journals Effects of a 7‐day military training exercise on whole‐body protein turnover: an observation of military‐specific protein requirements (820.9)

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Stefan Pasiakos ◽  
Nancy Murphy ◽  
Lee Margolis ◽  
Yngvar Gundersen ◽  
Svein Martini ◽  
...  
1989 ◽  
Vol 66 (6) ◽  
pp. 2850-2856 ◽  
Author(s):  
C. N. Meredith ◽  
M. J. Zackin ◽  
W. R. Frontera ◽  
W. J. Evans

The effects of regular submaximal exercise on dietary protein requirements, whole body protein turnover, and urinary 3-methylhistidine were determined in six young (26.8 +/- 1.2 yr) and six middle-aged (52.0 +/- 1.9 yr) endurance-trained men. They consumed 0.6, 0.9, or 1.2 g.kg-1.day-1 of high-quality protein over three separate 10-day periods, while maintaining training and constant body weight. Nitrogen measurements in diet, urine, and stool and estimated sweat and miscellaneous nitrogen losses showed that they were all in negative nitrogen balance at a protein intake of 0.6 g.kg-1.day-1. The estimated protein requirement was 0.94 +/- 0.05 g.kg-1.day-1 for the 12 men, with no effect of age. Whole body protein turnover, using [15N]glycine as a tracer, and 3-methylhistidine excretion were not different in the two groups, despite lower physical activity of the middle-aged men. Protein intake affected whole body protein flux and synthesis but not 3-methylhistidine excretion. These data show that habitual endurance exercise was associated with dietary protein needs greater than the current Recommended Dietary Allowance of 0.8 g.kg-1.day-1. However, whole body protein turnover and 3-methylhistidine excretion were not different from values reported for sedentary men.


Author(s):  
Katrina L Hinde ◽  
Thomas J O'Leary ◽  
Julie P Greeves ◽  
Sophie L Wardle

ABSTRACT Protein turnover reflects the continual synthesis and breakdown of body proteins, and can be measured at a whole-body (i.e. aggregated across all body proteins) or tissue (e.g. skeletal muscle only) level using stable isotope methods. Evaluating protein turnover in free-living environments, such as military training, can help inform protein requirements. We undertook a narrative review of published literature with the aim of reviewing the suitability of, and advancements in, stable isotope methods for measuring protein turnover in field research. The 2 primary approaches for measuring protein turnover are based on precursor- and end-product methods. The precursor method is the gold-standard for measuring acute (over several hours) skeletal muscle protein turnover, whereas the end-product method measures chronic (over several weeks) skeletal muscle protein turnover and provides the opportunity to monitor free-living activities. Both methods require invasive procedures such as the infusion of amino acid tracers and muscle biopsies to assess the uptake of the tracer into tissue. However, the end-product method can also be used to measure acute (over 9–24 h) whole-body protein turnover noninvasively by ingesting 15N-glycine, or equivalent isotope tracers, and collecting urine samples. The end-product method using 15N-glycine is a practical method for measuring whole-body protein turnover in the field over short (24 h) time frames and has been used effectively in recent military field research. Application of this method may improve our understanding of protein kinetics during conditions of high physiological stress in free-living environments such as military training.


1997 ◽  
Vol 128 (2) ◽  
pp. 233-246 ◽  
Author(s):  
S. A. NEUTZE ◽  
J. M. GOODEN ◽  
V. H. ODDY

This study used an experimental model, described in a companion paper, to examine the effects of feed intake on protein turnover in the small intestine of lambs. Ten male castrate lambs (∼ 10 months old) were offered, via continuous feeders, either 400 (n = 5) or 1200 (n = 5) g/day lucerne chaff, and mean experimental liveweights were 28 and 33 kg respectively. All lambs were prepared with catheters in the cranial mesenteric vein (CMV), femoral artery (FA), jugular vein and abomasum, and a blood flow probe around the CMV. Cr-EDTA (0·139 mg Cr/ml, ∼ 0·2 ml/min) was infused abomasally for 24 h and L-[2,6-3H]phenylalanine (Phe) (420±9·35 μCi into the abomasum) and L-[U-14C]phenylalanine (49·6±3·59 μCi into the jugular vein) were also infused during the last 8 h. Blood from the CMV and FA was sampled during the isotope infusions. At the end of infusions, lambs were killed and tissue (n = 4) and digesta (n = 2) samples removed from the small intestine (SI) of each animal. Transfers of labelled and unlabelled Phe were measured between SI tissue, its lumen and blood, enabling both fractional and absolute rates of protein synthesis and gain to be estimated.Total SI mass increased significantly with feed intake (P < 0·05), although not on a liveweight basis. Fractional rates of protein gain in the SI tended to increase (P = 0·12) with feed intake; these rates were −16·2 (±13·7) and 23·3 (±15·2) % per day in lambs offered 400 and 1200 g/day respectively. Mean protein synthesis and fractional synthesis rates (FSR), calculated from the mean retention of 14C and 3H in SI tissue, were both positively affected by feed intake (0·01 < P < 0·05). The choice of free Phe pool for estimating precursor specific radioactivity (SRA) for protein synthesis had a major effect on FSR. Assuming that tissue free Phe SRA represented precursor SRA, mean FSR were 81 (±15) and 145 (±24) % per day in lambs offered 400 and 1200 g/day respectively. Corresponding estimates for free Phe SRA in the FA and CMV were 28 (±2·9) and 42 (±3·5) % per day on 400 g/day, and 61 (±2·9) and 94 (±6·0) on 1200 g/day. The correct value for protein synthesis was therefore in doubt, although indirect evidence suggested that blood SRA (either FA or CMV) may be closest to true precursor SRA. This evidence included (i) comparison with flooding dose estimates of FSR, (ii) comparison of 3H[ratio ]14C Phe SRA in free Phe pools with this ratio in SI protein, and (iii) the proportion of SI energy use associated with protein synthesis.Using the experimental model, the proportion of small intestinal protein synthesis exported was estimated as 0·13–0·27 (depending on the choice of precursor) and was unaffected by feed intake. The contribution of the small intestine to whole body protein synthesis tended to be higher in lambs offered 1200 g/day (0·21) than in those offered 400 g/day (0·13). The data obtained in this study suggested a role for the small intestine in modulating amino acid supply with changes in feed intake. At high intake (1200 g/day), the small intestine increases in mass and CMV uptake of amino acids is less than absorption from the lumen, while at low intake (400 g/day), this organ loses mass and CMV uptake of amino acids exceeds that absorbed. The implications of these findings are discussed.


Metabolism ◽  
2005 ◽  
Vol 54 (9) ◽  
pp. 1162-1167 ◽  
Author(s):  
Xin Huang ◽  
Marc R. Blackman ◽  
Karen Herreman ◽  
Katharine M. Pabst ◽  
S. Mitchell Harman ◽  
...  

1995 ◽  
Vol 61 (1) ◽  
pp. 69-74 ◽  
Author(s):  
D L Pannemans ◽  
D Halliday ◽  
K R Westerterp ◽  
A D Kester

1999 ◽  
Vol 276 (6) ◽  
pp. E1092-E1098 ◽  
Author(s):  
Farook Jahoor ◽  
Brian Gazzard ◽  
Gary Phillips ◽  
Danny Sharpstone ◽  
Melanie Delrosario ◽  
...  

Although several studies have shown that asymptomatic human immunodeficiency virus infection elicits an increase in whole body protein turnover, it is not known whether this increased protein turnover includes changes in the kinetics of acute-phase proteins (APPs). To answer this question, we measured 1) the plasma concentrations of four positive (C-reactive protein, α1-antitrypsin, haptoglobin, and fibrinogen) and four negative APPs [albumin, high-density lipoprotein (HDL)-apolipoprotein (apo) A1, transthyretin, and retinol-binding protein] and 2) the fractional (FSR) and absolute (ASRs) synthesis rates of three positive and three negative APPs using a constant intravenous infusion of [2H5]phenylalanine in five subjects with symptom-free acquired immunodeficiency syndrome (AIDS) and five noninfected control subjects. Compared with the values of the controls, the plasma concentrations, FSRs, and ASRs of most positive APPs were higher in the AIDS group. The negative APPs had faster FSRs in the AIDS group, there was no difference between the ASRs of the two groups, and only HDL-apoA1 had a lower plasma concentration. These results suggest that symptom-free AIDS elicits an APP response that is different from bacterial infections, as the higher concentrations and faster rates of synthesis of the positive APPs are not accompanied by lower concentrations and slower rates of synthesis of most of the negative APPs.


1981 ◽  
Vol 61 (2) ◽  
pp. 217-228 ◽  
Author(s):  
E. B. Fern ◽  
P. J. Garlick ◽  
Margaret A. McNurlan ◽  
J. C. Waterlow

1. Four normal adults were given [15N]-glycine in a single dose either orally or intravenously. Rates of whole-body protein turnover were estimated from the excretion of 15N in ammonia and in urea during the following 9 h. The rate derived from urea took account of the [15N]urea retained in body water. 2. In postabsorptive subjects the rates of protein synthesis given by ammonia were equal to those from urea, when the isotope was given orally, but lower when an intravenous dose was given. 3. In subjects receiving equal portions of food every 2 h rates of synthesis calculated from ammonia were much lower than those from urea whether an oral or intravenous isotope was given. Comparison of rates obtained during the post-absorptive and absorptive periods indicated regulation by food intake primarily of synthesis when measurements were made on urea, but regulation primarily of breakdown when measurements were made on ammonia. 4. These inconsistencies suggest that changes in protein metabolism might be assessed better by correlating results given by different end-products, and it is suggested that the mean value given by urea and ammonia will be useful for this purpose.


2006 ◽  
Vol 31 (5) ◽  
pp. 557-564 ◽  
Author(s):  
Joseph W. Hartman ◽  
Daniel R. Moore ◽  
Stuart M. Phillips

It is thought that resistance exercise results in an increased need for dietary protein; however, data also exists to support the opposite conclusion. The purpose of this study was to determine the impact of resistance exercise training on protein metabolism in novices with the hypothesis that resistance training would reduce protein turnover and improve whole-body protein retention. Healthy males (n = 8, 22 ± 1 y, BMI = 25.3 ± 1.8 kg·m–2) participated in a progressive whole-body split routine resistance-training program 5d/week for 12 weeks. Before (PRE) and after (POST) the training, oral [15N]-glycine ingestion was used to assess nitrogen flux (Q), protein synthesis (PS), protein breakdown (PB), and net protein balance (NPB = PS – PB). Macronutrient intake was controlled over a 5d period PRE and POST, while estimates of protein turnover and urinary nitrogen balance (Nbal = Nin – urine Nout) were conducted. Bench press and leg press increased 40% and 50%, respectively (p < 0.01). Fat- and bone-free mass (i.e., lean muscle mass) increased from PRE to POST (2.5 ± 0.8 kg, p < 0.05). Significant PRE to POST decreases (p <0.05) occurred in Q (0.9 ± 0.1 vs. 0.6 ± 0.1 g N·kg–1·d–1), PS (4.6 ± 0.7 vs. 2.9 ± 0.3 g·kg–1·d–1), and PB (4.3 ± 0.7 vs. 2.4 ± 0.2 g·kg–1·d–1). Significant training-induced increases in both NPB (PRE = 0.22 ± 0.13 g·kg–1·d–1; POST = 0.54 ± 0.08 g·kg–1·d–1) and urinary nitrogen balance (PRE = 2.8 ± 1.7 g N·d–1; POST = 6.5 ± 0.9 g N·d–1) were observed. A program of resistance training that induced significant muscle hypertrophy resulted in reductions of both whole-body PS and PB, but an improved NPB, which favoured the accretion of skeletal muscle protein. Urinary nitrogen balance increased after training. The reduction in PS and PB and a higher NPB in combination with an increased nitrogen balance after training suggest that dietary requirements for protein in novice resistance-trained athletes are not higher, but lower, after resistance training.


Sign in / Sign up

Export Citation Format

Share Document