scholarly journals Androgen Regulation of CXCR4/CXCR7 Chemokine Receptors: Disconnect between Transcription and Translation in Androgen‐responsive Prostate Cancer LNCaP Cells

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Lu Yu ◽  
Liangli Yu ◽  
Thomas Wang
2014 ◽  
Vol 395 (9) ◽  
pp. 1127-1132 ◽  
Author(s):  
John Lai ◽  
Jiyuan An ◽  
Colleen C. Nelson ◽  
Melanie L. Lehman ◽  
Jyotsna Batra ◽  
...  

Abstract We assessed whether alternative transcripts (using KLK2, KLK3 and KLK4 as models) are differentially regulated by androgens and anti-androgens as an indicator of prostate cancers as they acquire treatment resistance. Using RNAseq of LNCaP cells treated with dihydrotestosterone, bicalutamide and enzalutamide, we show that the expression of variant KLK transcripts is markedly different to other variant transcripts at those loci. We also reveal that KLK variants are also over 2-fold more highly expressed in prostate cancers compared to their corresponding normal prostate. We propose that androgens and anti-androgens can activate specific variant transcripts of critical prostate cancer genes during treatment resistance.


1992 ◽  
Vol 68 (06) ◽  
pp. 662-666 ◽  
Author(s):  
W Hollas ◽  
N Hoosein ◽  
L W K Chung ◽  
A Mazar ◽  
J Henkin ◽  
...  

SummaryWe previously reported that extracellular matrix invasion by the prostate cancer cell lines, PC-3 and DU-145 was contingent on endogenous urokinase being bound to a specific cell surface receptor. The present study was undertaken to characterize the expression of both urokinase and its receptor in the non-invasive LNCaP and the invasive PC-3 and DU-145 prostate cells. Northern blotting indicated that the invasive PC-3 cells, which secreted 10 times more urokinase (680 ng/ml per 106 cells per 48 h) than DU-145 cells (63 ng/ml per 106 cells per 48 h), had the most abundant transcript for the plasminogen activator. This, at least, partly reflected a 3 fold amplification of the urokinase gene in the PC-3 cells. In contrast, urokinase-specific transcript could not be detected in the non-invasive LNCaP cells previously characterized as being negative for urokinase protein. Southern blotting indicated that this was not a consequence of deletion of the urokinase gene. Crosslinking of radiolabelled aminoterminal fragment of urokinase to the cell surface indicated the presence of a 51 kDa receptor in extracts of the invasive PC-3 and DU-145 cells but not in extracts of the non-invasive LNCaP cells. The amount of binding protein correlated well with binding capacities calculated by Scatchard analysis. In contrast, the steady state level of urokinase receptor transcript was a poor predictor of receptor display. PC-3 cells, which were equipped with 25,000 receptors per cell had 2.5 fold more steady state transcript than DU-145 cells which displayed 93,000 binding sites per cell.


2020 ◽  
Author(s):  
Lungwani Muungo

The androgen receptor (AR) plays a critical role in the development and the progression of prostate cancer. Alterations in theexpression of AR coregulators lead to AR hypersensitivity, which is one of the mechanisms underlying the progression ofprostate cancer into a castrate-resistant state. Octamer transcription factor 1 (Oct1) is a ubiquitous member of the POUhomeodomainfamily that functions as a coregulator of AR. In our study, the contribution of Oct1 to prostate cancerdevelopment was examined. Immunocytochemistry analysis showed that Oct1 is expressed in the nuclei of LNCaP cells.siRNA-mediated silencing of Oct1 expression inhibited LNCaP cell proliferation. Immunohistochemical analysis of Oct1expression in tumor specimens obtained from 102 patients with prostate cancer showed a positive correlation of Oct1immunoreactivity with a high Gleason score and AR immunoreactivity (p 5 0.0042 and p < 0.0001, respectively). Moreover,patients with high immunoreactivity of Oct1 showed a low cancer-specific survival rate, and those patients with highimmunoreactivities of both Oct1 and AR exhibited poorer cancer-specific prognosis. Multivariate hazard analysis revealed asignificant correlation between high Oct1 immunoreactivity and poor cancer-specific survival (p 5 0.012). These resultsdemonstrate that Oct1 can be a prognostic factor in prostate cancer as a coregulator of AR and may lead to the developmentof a new therapeutic intervention for prostate cancer.


2021 ◽  
Vol 14 (5) ◽  
pp. 385
Author(s):  
Leonardo L. Fuscaldi ◽  
Danielle V. Sobral ◽  
Ana Claudia R. Durante ◽  
Fernanda F. Mendonça ◽  
Ana Cláudia C. Miranda ◽  
...  

Prostate-specific membrane antigen (PSMA) is a glycoprotein present in the prostate, that is overexpressed in prostate cancer (PCa). Recently, PSMA-directed radiopharmaceuticals have been developed, allowing the pinpointing of tumors with the Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) imaging techniques. The aim of the present work was to standardize and validate an automatic synthesis module-based radiolabeling protocol for [68Ga]Ga-PSMA-11, as well as to produce a radiopharmaceutical for PET imaging of PCa malignancies. [68Ga]Ga-PSMA-11 was evaluated to determine the radiochemical purity (RCP), stability in saline solution and serum, lipophilicity, affinity to serum proteins, binding and internalization to lymph node carcinoma of the prostate (LNCaP) cells, and ex vivo biodistribution in mice. The radiopharmaceutical was produced with an RCP of 99.06 ± 0.10%, which was assessed with reversed-phase high-performance liquid chromatography (RP-HPLC). The product was stable in saline solution for up to 4 h (RCP > 98%) and in serum for up to 1 h (RCP > 95%). The lipophilicity was determined as −3.80 ± 0.15, while the serum protein binding (SPB) was <17%. The percentages of binding to LNCaP cells were 4.07 ± 0.51% (30 min) and 4.56 ± 0.46% (60 min), while 19.22 ± 2.73% (30 min) and 16.85 ± 1.34% (60 min) of bound material was internalized. High accumulation of [68Ga]Ga-PSMA-11 was observed in the kidneys, spleen, and tumor, with a tumor-to-contralateral-muscle ratio of >8.5 and a tumor-to-blood ratio of >3.5. In conclusion, an automatic synthesis module-based radiolabeling protocol for [68Ga]Ga-PSMA-11 was standardized and the product was evaluated, thus verifying its characteristics for PET imaging of PCa tumors in a clinical environment.


2021 ◽  
Vol 20 ◽  
pp. 153473542199682
Author(s):  
Prathesha Pillai ◽  
Ginil Kumar Pooleri ◽  
Shantikumar V. Nair

Co-therapy with herbal extracts along with current clinical drugs is being increasingly recognized as a useful complementary treatment for cancer. The anti-cancer property of the phyto-derivative acetyl-11 keto β boswellic acid (AKBA) has been studied in many cancers, including prostate cancer. However, the whole extract of the gum resin Boswellia serrata (BS) and anti-androgen enzalutamide has not been explored in prostate cancer to date. We hypothesized that the BS extract containing 30% (AKBA) with enzalutamide acted synergistically in the early phase of cancer, especially in LNCaP cells, by inhibiting androgen receptor (AR) and by reducing cell proliferation, and further, that the extract would be superior to the action of the active ingredient AKBA when used alone or in combination with enzalutamide. To test our hypothesis, we treated LNCaP cells with BS extract or AKBA and enzalutamide both individually and in combination to analyze cell viability under different levels of dihydrotestosterone (DHT). The inhibition of androgen receptor (AR) followed by the expression of prostate-specific antigen (PSA) and the efflux mechanism of the cells were analyzed to determine the effect of the combination on the cellular mechanism. Cells derived from prostate cancer patients were also tested with the combination. Only 6 µM enzalutamide along with BS in the range of 4.1 µg/ml to 16.4 µg/ml gave the best synergistic results with nearly 50% cell killing even though standard enzalutamide doses were as high as 48 µM. Cell killing was most effective at intermediate DHT concentrations of approximately 1 nM, which corresponds to normal physiological serum levels of DHT. The Pgp expression level and the androgen receptor expression levels were reduced under the combination treatment; the former helping to minimize drug efflux and the latter by reducing the sensitivity to hormonal changes. Furthermore, the combination reduced the PSA level secreted by the cells. In contrast, AKBA could not achieve the needed synergism for adequate cell killing at equivalent concentrations. The combination of enzalutamide and BS extract containing 30% AKBA because of their synergistic interaction is an attractive therapeutic option for treating early stage (hormone-dependent) prostate cancer and is superior to the use of AKBA alone.


Fitoterapia ◽  
2014 ◽  
Vol 92 ◽  
pp. 9-15 ◽  
Author(s):  
Toshinobu Shakui ◽  
Kazuhiro Iguchi ◽  
Tetsuro Ito ◽  
Misako Baba ◽  
Shigeyuki Usui ◽  
...  

2012 ◽  
Vol 22 (17) ◽  
pp. 5470-5474 ◽  
Author(s):  
Byung Jun Ryu ◽  
Seung-hwa Baek ◽  
Jiyeon Kim ◽  
Su Jung Bae ◽  
Sung-Youn Chang ◽  
...  

2021 ◽  
Author(s):  
Jiabin Zhao ◽  
Binjiahui Zhao ◽  
Limin Hou

Abstract Background: The study aimed to examine the molecular mechanism and clinical significance of A-kinase interacting protein 1 (AKIP1) in prostate cancer. Methods: The effect of AKIP1 on cell proliferation, migration, invasion, apoptosis and stemness was determined by overexpressing and knocking down AKIP1 in LNCaP and 22Rv1 cells via lentivirus infection. Furthermore, differentially expressed genes (DEGs) by AKIP1 modification were determined using RNA sequencing. Besides, the correlation of AKIP1 with clinicopathological features and prognosis in 130 prostate cancer patients was assessed. Results: AKIP1 expression was increased in VCaP, LNCaP, DU145 cells while similar in 22Rv1 cells compared with RWPE-1 cells. Furthermore, AKIP1 overexpression promoted 22Rv1 and LNCaP cell proliferation, invasion, but inhibited apoptosis; meanwhile, AKIP1 overexpression increased CD133+ cell rate and enhanced spheres formation efficiency in 22Rv1 and LNCaP cells. Reversely, AKIP1 knockdown exhibited the opposite effect in 22Rv1 and LNCaP cells. Further RNA sequencing analysis exhibited that AKIP1-modified DEGs were enriched in the oncogenic signaling pathways related to prostate cancer, such as PI3K-Akt, MEK/ERK, mTOR signaling pathways. The following western blot indicated that AKIP1 overexpression activated while its knockdown blocked PI3K-Akt, MEK/ERK, mTOR signaling pathways in prostate cancer cells. Clinically, AKIP1 was upregulated in the prostate tumor tissues compared with paired adjacent tissues, and its tumor high expression correlated with increased pathological T, pathological N stage and poor prognosis in prostate cancer patients. Conclusion: AKIP1 promotes cell proliferation, invasion, stemness, activates PI3K-Akt, MEK/ERK, mTOR signaling pathways and correlates with worse tumor features and prognosis in prostate cancer.


2021 ◽  
Author(s):  
Peace C. Asuzu ◽  
Alberta N.A. Aryee ◽  
Nicholas Trompeter ◽  
Yasmin Mann ◽  
Samuel A. Besong ◽  
...  

AbstractPhenolic compounds are products of secondary plant metabolism known for their biological activity including their antimicrobial, antioxidant, analgesic, stimulant, anti- carcinogenic, and aphrodisiac properties. The main objective of this study was to assess the potency/cytotoxic effects of Prunus africana extracts on prostate cancer cells in vitro. Using different concentrations of P. africana extracts, prostate cancer C4-2 cells, a hormonally insensitive subline of LNCaP cells, were treated in a proliferation assay. A concentration dependent inhibition of cell growth in cells treated with P. africana bark and root extracts was present from days 1 through 3 of incubation, with the methanol extract of the bark showing the strongest effect. Compared to other plant parts, leaf extracts were significantly less cytotoxic at the same concentrations. As C4-2 cells are hormonally insensitive and designed to mimic advanced prostate cancer, crude extracts of P. africana are a possible treatment option, not only for hormone sensitive prostate cancer, but also advanced, hormonally insensitive prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document