scholarly journals Role of Testosterone Levels on the Combinatorial Effect of Boswellia serrata Extract and Enzalutamide on Androgen Dependent LNCaP Cells and in Patient Derived Cells

2021 ◽  
Vol 20 ◽  
pp. 153473542199682
Author(s):  
Prathesha Pillai ◽  
Ginil Kumar Pooleri ◽  
Shantikumar V. Nair

Co-therapy with herbal extracts along with current clinical drugs is being increasingly recognized as a useful complementary treatment for cancer. The anti-cancer property of the phyto-derivative acetyl-11 keto β boswellic acid (AKBA) has been studied in many cancers, including prostate cancer. However, the whole extract of the gum resin Boswellia serrata (BS) and anti-androgen enzalutamide has not been explored in prostate cancer to date. We hypothesized that the BS extract containing 30% (AKBA) with enzalutamide acted synergistically in the early phase of cancer, especially in LNCaP cells, by inhibiting androgen receptor (AR) and by reducing cell proliferation, and further, that the extract would be superior to the action of the active ingredient AKBA when used alone or in combination with enzalutamide. To test our hypothesis, we treated LNCaP cells with BS extract or AKBA and enzalutamide both individually and in combination to analyze cell viability under different levels of dihydrotestosterone (DHT). The inhibition of androgen receptor (AR) followed by the expression of prostate-specific antigen (PSA) and the efflux mechanism of the cells were analyzed to determine the effect of the combination on the cellular mechanism. Cells derived from prostate cancer patients were also tested with the combination. Only 6 µM enzalutamide along with BS in the range of 4.1 µg/ml to 16.4 µg/ml gave the best synergistic results with nearly 50% cell killing even though standard enzalutamide doses were as high as 48 µM. Cell killing was most effective at intermediate DHT concentrations of approximately 1 nM, which corresponds to normal physiological serum levels of DHT. The Pgp expression level and the androgen receptor expression levels were reduced under the combination treatment; the former helping to minimize drug efflux and the latter by reducing the sensitivity to hormonal changes. Furthermore, the combination reduced the PSA level secreted by the cells. In contrast, AKBA could not achieve the needed synergism for adequate cell killing at equivalent concentrations. The combination of enzalutamide and BS extract containing 30% AKBA because of their synergistic interaction is an attractive therapeutic option for treating early stage (hormone-dependent) prostate cancer and is superior to the use of AKBA alone.

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 914
Author(s):  
Po-Fan Hsieh ◽  
Wen-Ping Jiang ◽  
Shih-Yin Huang ◽  
Praveenkumar Basavaraj ◽  
Jin-Bin Wu ◽  
...  

Background: Prostate cancer (PCa) is the most prevalent malignancy diagnosed in men in Western countries. There is currently no effective therapy for advanced PCa aggressiveness, including castration-resistant progression. The aim of this study is to evaluate the potential efficacy and determine the molecular basis of Davallia formosana (DF) in PCa. Methods: LNCaP (androgen-sensitive) and C4-2 (androgen-insensitive/castration-resistant) PCa cells were utilized in this study. An MTT-based method, a wound healing assay, and the transwell method were performed to evaluate cell proliferation, migration, and invasion. Intracellular fatty acid levels and lipid droplet accumulation were analyzed to determine lipogenesis. Moreover, apoptotic assays and in vivo experiments were conducted. Results: DF ethanol extract (DFE) suppressed proliferation, migration, and invasion in PCa cells. DFE attenuated lipogenesis through inhibition of the expression of sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FASN). Moreover, DFE decreased androgen receptor (AR) and prostate-specific antigen (PSA) expression in PCa cells. We further showed the potent therapeutic activity of DFE by repressing the growth and leading to apoptosis of subcutaneous C4-2 tumors in a xenograft mouse model. Conclusions: These data provide a new molecular basis of DFE in PCa cells, and co-targeting SREBP-1/FASN/lipogenesis and the AR axis by DFE could be employed as a novel and promising strategy for the treatment of PCa.


2004 ◽  
Vol 286 (6) ◽  
pp. E927-E931 ◽  
Author(s):  
Yasuhisa Fujii ◽  
Satoru Kawakami ◽  
Yohei Okada ◽  
Yukio Kageyama ◽  
Kazunori Kihara

Activins are multifunctional growth and differentiation factors and stimulate FSH-β gene expression and FSH secretion by the pituitary gonadotropes. Follistatins bind activin, resulting in the neutralization of activin bioactivity. The activin/follistatin system is present in the prostate tissue. Prostate-specific antigen (PSA) plays an important role in male reproductive physiology as well as being very important as a tumor marker for prostate cancer. Thus the regulation of PSA has important clinical implications. Previous studies showed that PSA is primarily regulated by androgens. In the present study, we evaluated the direct effects of activin A on the proliferation and PSA production of prostate cancer LNCaP cells, which express functional activin receptors and androgen receptor and PSA. LNCaP cells were treated with activin A and 5α-dihydrotestosterone (DHT) with or without their antagonists (follistatin or the nonsteroidal anti-androgen bicalutamide). Activin A decreased cell growth of LNCaP cells in a dose-dependent manner, whereas DHT increased it in a biphasic manner. In contrast to their opposing actions on cell growth, both activin A and DHT upregulated PSA gene expression and increased PSA secretion by LNCaP cells. The effects of activin A and DHT to increase PSA production were synergistic or additive. Follistatin or bicalutamide was without effect on cell growth or PSA production. The effects of activin A on LNCaP cells were blocked by follistatin, not by bicalutamide, whereas effects of DHT were prevented by bicalutamide, not by follistatin. Activin A upregulates PSA production, and the effect is through an androgen receptor-independent pathway. The activin/follistatin system can be a physiological modulator of PSA gene transcription and secretion in the prostate tissue, and activins may cooperate with androgen to upregulate PSA in vivo.


2008 ◽  
Vol 22 (7) ◽  
pp. 1606-1621 ◽  
Author(s):  
Silke Kaulfuss ◽  
Michal Grzmil ◽  
Bernhard Hemmerlein ◽  
Paul Thelen ◽  
Stefan Schweyer ◽  
...  

Abstract In the present study, we demonstrate that leupaxin mRNA is overexpressed in prostate cancer (PCa) as compared with normal prostate tissue by using cDNA arrays and quantitative RT-PCR analyses. Moderate to strong expression of leupaxin protein was detected in approximately 22% of the PCa tissue sections analyzed, and leupaxin expression intensities were found to be significantly correlated with Gleason patterns/scores. In addition, different leupaxin expression levels were observed in PCa cell lines, and at the subcellular level, leupaxin was usually localized in focal adhesion sites. Furthermore, mutational analysis and transfection experiments of LNCaP cells using different green fluorescent protein-leupaxin constructs demonstrated that leupaxin contains functional nuclear export signals in its LD3 and LD4 motifs, thus shuttling between the cytoplasm and the nucleus. We could also demonstrate for the first time that leupaxin interacts with the androgen receptor in a ligand-dependent manner and serves as a transcriptional activator of this hormone receptor in PCa cells. Down-regulation of leupaxin expression using RNA interference in LNCaP cells resulted in a high rate of morphological changes, detachment, spontaneous apoptosis, and a reduction of prostate-specific antigen secretion. In contrast, knockdown of leupaxin expression in androgen-independent PC-3 and DU 145 cells induced a significant decrease of both the invasive capacity and motility. Our results therefore indicate that leupaxin could serve as a potential progression marker for a subset of PCa and may represent a novel coactivator of the androgen receptor. Leupaxin could function as a putative target for therapeutic interventions of a subset of advanced PCa.


2009 ◽  
Vol 16 (4) ◽  
pp. 1139-1155 ◽  
Author(s):  
Atsushi Mizokami ◽  
Eitetsu Koh ◽  
Kouji Izumi ◽  
Kazutaka Narimoto ◽  
Masashi Takeda ◽  
...  

One of the mechanisms through which advanced prostate cancer (PCa) usually relapses after androgen deprivation therapy (ADT) is the adaptation to residual androgens in PCa tissue. It has been observed that androgen biosynthesis in PCa tissue plays an important role in this adaptation. In the present study, we investigated how stromal cells affect adrenal androgen dehydroepiandrosterone (DHEA) metabolism in androgen-sensitive PCa LNCaP cells. DHEA alone had little effect on prostate-specific antigen (PSA) promoter activity and the proliferation of LNCaP cells. However, the addition of prostate stromal cells or PCa-derived stromal cells (PCaSC) increased DHEA-induced PSA promoter activity via androgen receptor activation in the LNCaP cells. Moreover, PCaSC stimulated the proliferation of LNCaP cells under physiological concentrations of DHEA. Biosynthesis of testosterone or dihydrotestosterone from DHEA in stromal cells and LNCaP cells was involved in this stimulation of LNCaP cell proliferation. Androgen biosynthesis from DHEA depended upon the activity of various steroidogenic enzymes present in stromal cells. Finally, the dual 5α-reductase inhibitor dutasteride appears to function not only as a 5α-reductase inhibitor but also as a 3β-hydroxysteroid dehydrogenase inhibitor in LNCaP cells. Taken together, this coculture assay system provides new insights of coordinate androgen biosynthesis under the microenvironment of PCa cells before and after ADT, and offers a model system for the identification of important steroidogenic enzymes involved in PCa progression and for the development of the corresponding inhibitors of androgen biosynthesis.


Endocrinology ◽  
2007 ◽  
Vol 148 (3) ◽  
pp. 1340-1349 ◽  
Author(s):  
Zhiming Yang ◽  
Yu-Jia Chang ◽  
Hiroshi Miyamoto ◽  
Shuyuan Yeh ◽  
Jorge L. Yao ◽  
...  

The androgen receptor (AR) requires coregulators for its optimal transactivation. Whether AR coregulators also need interacting proteins to modulate their function remains unclear. Here we describe heterogeneous nuclear ribonucleoprotein (hnRNP) A1 as an associated negative modulator for the AR coregulator ARA54. hnRNP A1 selectively suppressed ARA54-enhanced wild-type and mutant AR transactivation via interruption of AR-ARA54 interaction and ARA54 homodimerization. Stable transfection of hnRNP A1 in the LNCaP cells suppressed AR-mediated cell growth and the expression of prostate-specific antigen, and this suppressive effect was abolished by the addition of ARA54-small interfering RNA. Small interfering RNA knockdown of endogenous hnRNP A1 enhanced cell growth and prostate-specific antigen expression in LNCaP cells. These results not only suggest that the loss of hnRNP A1 expression might activate the ARA54-enhanced cell growth and contribute to the prostate cancer progression, but also demonstrate the dual functional roles for ARA54 as an AR coregulator directly and as a mediator for the suppressive effect of hnRNP A1 indirectly. The novel finding that a protein can modulate AR function without direct interaction with AR might provide a new therapeutic approach to battle prostate cancer by targeting AR indirectly with fewer side effects.


2019 ◽  
Vol 8 (9) ◽  
pp. 1379
Author(s):  
Kenichiro Ishii ◽  
Izumi Matsuoka ◽  
Takeshi Sasaki ◽  
Kohei Nishikawa ◽  
Hideki Kanda ◽  
...  

Loss of androgen receptor (AR) dependency in prostate cancer (PCa) cells is associated with progression to castration-resistant prostate cancer (CRPC). The tumor stroma is enriched in fibroblasts that secrete AR-activating factors. To investigate the roles of fibroblasts in AR activation under androgen deprivation, we used three sublines of androgen-sensitive LNCaP cells (E9 and F10 cells: low androgen sensitivity; and AIDL cells: androgen insensitivity) and original fibroblasts derived from patients with PCa. We performed in vivo experiments using three sublines of LNCaP cells and original fibroblasts to form homotypic tumors. The volume of tumors derived from E9 cells plus fibroblasts was reduced following androgen deprivation therapy (ADT), whereas that of F10 or AIDL cells plus fibroblasts was increased even after ADT. In tumors derived from E9 cells plus fibroblasts, serum prostate-specific antigen (PSA) decreased rapidly after ADT, but was still detectable. In contrast, serum PSA was increased even in F10 cells inoculated alone. In indirect cocultures with fibroblasts, PSA production was increased in E9 cells. Epidermal growth factor treatment stimulated Akt and p44/42 mitogen-activated protein kinase phosphorylation in E9 cells. Notably, AR splice variant 7 was detected in F10 cells. Overall, we found that fibroblast-secreted AR-activating factors modulated AR signaling in E9 cells after ADT and loss of fibroblast-dependent AR activation in F10 cells may be responsible for CRPC progression.


2008 ◽  
Vol 22 (2) ◽  
pp. 273-286 ◽  
Author(s):  
Soyoung Ko ◽  
Liheng Shi ◽  
Soyoung Kim ◽  
Chung S. Song ◽  
Bandana Chatterjee

Abstract Increased androgen receptor (AR) levels are associated with prostate cancer progression to androgen independence and therapy resistance. Evidence has suggested that chronic inflammation is closely linked to various cancers including prostate cancer. Herein we show that the proinflammatory cytokine TNFα negatively regulates AR mRNA and protein expression and reduces androgen sensitivity in androgen-dependent LNCaP human prostate cancer cells. Decreased AR expression results from transcription repression involving essential in cis interaction of nuclear factor-κB (NF-κB) with the B-myb transcription factor at a composite genomic element in the 5′-untranslated region of AR. The negative regulation was abrogated when NF-κB activity was inhibited by a superrepressor of the inhibitory κB protein. In contrast, androgen-independent C4-2 (LNCaP-derived) cells fail to show AR down-regulation by TNFα, despite expression of B-myb and TNFα-induced NF-κB activity similar to that in LNCaP cells. The negatively regulated AR gene chromatin region showed TNFα-dependent enrichment of B-myb and the NF-κB proteins p65 and p50. In parallel, the histone deacetylase 1, corepressor silencing mediator of retinoid and thyroid hormone receptor and the corepressor-associated scaffold protein mSin3A were recruited to the inhibitory site. In C4-2 cells, neither NF-κB and B-myb, nor any of the corepressor components, were detected at the negative site in response to TNFα. Apoptosis was induced in TNFα-treated LNCaP cells, likely in part due to the down-regulation of AR. The androgen-independent, AR-expressing C4-2 and C4-2B (derived from C4-2) cells were resistant to TNFα-induced apoptosis. The results linking androgen dependence to the NF-κB and AR pathways may be insightful in identifying novel treatment targets for prostate cancer.


2012 ◽  
Vol 30 (5_suppl) ◽  
pp. 194-194 ◽  
Author(s):  
Mitchell E. Gross ◽  
Daniel Lazar ◽  
Edward H Cho ◽  
Madelyn Luttgen ◽  
Thomas Metzner ◽  
...  

194 Background: We have established a fluid phase biopsy approach that identifies CTCs which preserves cytologic features in high-definition (HD) for diagnostic pathology without using immune or surface receptor-based enrichment. HD-CTCs identified with this approach can be used for enumeration and molecular characterization. Methods: Blood was collected from metastatic prostate cancer patients and normal donors in Cyto-Chex tubes (Streck, Omaha, NE) as part of IRB approved protocols at each site. Following erythrocyte lysis, 3 million nucleated cells were deposited on a glass slide. Samples were incubated with a pan-cytokeratin (CK), CD45, and androgen receptor (AR) antibodies and counter-stained with DAPI. LNCaP cells were spiked into normal blood. Images were obtained with a fluorescent scanning microscope and analyzed with a computer algorithm. Candidate HD-CTCs were subsequently verified by expert readers. Slides were re-imaged for quantitative analysis using at a fixed exposure and gain. Results: A total of 227 CTCs from ten patients were compared to 20 LNCaP cells. The median (range) HD-CTCs in this cohort was: 9 (1-62) cells/ml. The mean ± standard deviation measurements in HD-CTCs were observed: CK intensity 60.4±154; total cell area 89.0 ± 53.8 µm2; nuclear area 61.1 ± 36.0 µm2. LNCaP cells spiked into normal blood gave the following values: CK intensity 1166+/−306; total cell area 143 ± 48.1 µm2; nuclear area 63.1 ± 18.6 µm2. CTCs were additionally classified as either AR positive (AR+) or AR negative (AR−). 37 of the 227 (16.3%) HD-CTCs were AR+. The average CK intensity was significantly higher in AR+ versus AR− cells at 174.23 and 39.86, respectively (p<0.001). The AR expression intensity in AR+ HD-CTCs and LNCaP cells was comparable at 979.4 and 902.2, respectively (p=0.824). Conclusions: We find a positive association between AR and CK expression on a per cell basis. Further, we find AR is expressed at comparable levels in CTCs from patients and human prostate cancer cells in culture. The HD-CTC based approach may be used for enumeration and molecular interrogation of CTCs in patients with prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document