Platelet‐activating factor (PAF) induces activation of matrix metalloproteinase 2 activity and vascular endothelial cell invasion and migration

2004 ◽  
Vol 18 (3) ◽  
pp. 568-570 ◽  
Author(s):  
T. William Axelrad ◽  
Dayanand D. Deo ◽  
Paulo Ottino ◽  
Jennefer Van Kirk ◽  
Nicolas G. Bazan ◽  
...  
2018 ◽  
Vol 49 (6) ◽  
pp. 2277-2292 ◽  
Author(s):  
Bing Liu ◽  
Lili Xu ◽  
Xinming Yu ◽  
Xuefei Jiao ◽  
Junwei Yan ◽  
...  

Background/Aims: In this study, we aimed to investigate the effects of genistein on the focal adhesion signaling pathway through its regulation of FAK. Genistein ultimately restored and alleviated estradiol-induced vascular endothelial injury. Methods: Microarray analysis was used to select differentially expressed genes. MTT assay was performed to detect the cell activity, and ROS test and NO test were performed to detect the degree of damage to HUVECs (human umbilical vein endothelial cells). The relative mRNA expression levels and protein expression levels of FAK were tested by western blot and qRT-PCR. GO functional analysis and KEGG pathway analysis were applied to predict the possible relationship between functions and related pathways, and transwell assay was used to detect cell invasion and migration. Results: FAK was highly expressed in the HUVECs treated with estradiol (HU-ESTs). Cell viability and NO level decreased, whereas ROS level increased in the HU-ESTs. Effective knockdown of FAK in HU-ESTs elevated cell viability and NO levels while suppressing ROS levels. In addition, inhibition of FAK greatly decreased cell invasion and migration, while the overexpression of FAK enhanced cell invasion and migration. KEGG further indicated focal adhesion pathways were activated. Genistein elevated HU-EST viability, and NO and ROS level increased in a concentration dependent manner. Transwell and western blot assays revealed that genistein could reduce the FAK expression levels and alleviate the damage to the HU-ESTs. Conclusion: FAK overexpression promoted invasion and migration of the HU-ESTs. However, genistein greatly suppressed FAK and estradiol-induced vascular endothelial cell injury.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7163 ◽  
Author(s):  
Gang Liu ◽  
Fang Ren ◽  
Yongsheng Song

Background It is known that secreted protein acidic and cysteine rich (osteonectin), cwcv and kazal-like domains proteoglycan 2 (SPOCK2) plays a significant role in the development and progression of several human cancers; however, the role of SPOCK2 in prostate cancer (PCa) remains unclear. This study aimed to find the role and mechanism of SPOCK2 in the development and progression of PCa. Methods The messenger ribonucleic acid (mRNA) expression of SPOCK2 in PCa tissue was detected by real-time polymerase chain reaction (PCR). Upregulation of the SPOCK2 gene was achieved using the DU145 and LNCaP cells by transfecting the cells with SPOCK2 recombinant fragment. Cell invasion and migration ability were detected by transwell chamber and wound healing assay. The expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase 2 (MMP2) in the cells was detected by Western Blot and zymography gel assay. Results The mRNA level of SPOCK2 was significantly lower in the PCa tissue compared to benign prostate hyperplasia. Upregulation of SPOCK2 inhibited cell invasion and migration in DU145 and LNCaP cells, inhibited the expression of MT1-MMP and MMP2 and, inhibited activation of MMP2 in DU145 and LNCaP cells. Conclusion SPOCK2 is associated with the progression of PCa. Upregulation of SPOCK2 can inhibit PCa cell invasion and metastasis by decreasing MT1-MMP and MMP2 gene expression and decreasing MMP2 protein activation.


2007 ◽  
Vol 282 (12) ◽  
pp. 8741-8748 ◽  
Author(s):  
Tatsuya Fujikawa ◽  
Hidenori Shiraha ◽  
Naoki Ueda ◽  
Nobuyuki Takaoka ◽  
Yutaka Nakanishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document