Dilutional Acidosis following Hetastarch or Albumin in Healthy Volunteers

2000 ◽  
Vol 93 (5) ◽  
pp. 1184-1187 ◽  
Author(s):  
Jonathan H. Waters ◽  
Clifford A. Bernstein

Background The intent of this study was to evaluate the impact of the commonly used colloids-hetastarch and albumin-on in vivo acid-base balance. From this evaluation, a better understanding of the mechanism of dilutional acidosis was expected. Methods In a prospective, randomized fashion, 11 healthy volunteers were administered 15 ml/kg hetastarch solution, 6%, or 15 ml/kg albumin, 5%, intravenously over 30 min. Four weeks later, the study subjects were administered the other colloid. Arterial blood gas and electrolyte parameters were measured at baseline and at 30, 60, 90, 120, 210, and 300 min after colloid administration. Pre- and postlaboratory values were compared within groups using a paired t test and a Wilcoxon signed rank test and between groups using repeated-measures analysis of variance and a Wilcoxon rank sum test. Results Thirty min after infusion, subjects who were administered hetastarch showed statistically significant changes (P < 0.05) in base excess (from 2.5 +/- 0.9 mEq/l to 0.7 +/- 1.1 mEq/l), HCO3- concentration (from 27 +/- 1.0 mEq/l to 25 +/- 1.3 mEq/l), Cl- concentration (from 108 +/- 2 mEq/l to 112 +/- 2 mEq/l), albumin concentration (from 4.4 +/- 0.2 g/dl to 3.5 +/- 0.5 g/dl), and arterial carbon dioxide tension (Paco2; from 40.8 +/- 2.3 mmHg to 39. 2 +/- 3.2 mmHg), whereas only the albumin concentration (from 4.4 +/- 0.2 g/dl to 4.8 +/- 0.6 g/dl) changed significantly in the albumin-treated group. Conclusions Decreases in base excess were observed for 210 min after hetastarch administration but not after albumin. The mechanism for this difference is discussed.


Author(s):  
Lukasz Krzych ◽  
Olga Wojnarowicz ◽  
Paweł Ignacy ◽  
Julia Dorniak

Introduction. Reliable results of an arterial blood gas (ABG) analysis are crucial for the implementation of appropriate diagnostics and therapy. We aimed to investigate the differences (Δ) between ABG parameters obtained from point-of-care testing (POCT) and central laboratory (CL) measurements, taking into account the turnaround time (TAT). Materials and methods. A number of 208 paired samples were collected from 54 intensive care unit (ICU) patients. Analyses were performed using Siemens RAPIDPoint 500 Blood Gas System on the samples just after blood retrieval at the ICU and after delivery to the CL. Results. The median TAT was 56 minutes (IQR 39-74). Differences were found for all ABG parameters. Median Δs for acid-base balance ere: ΔpH=0.006 (IQR –0.0070–0.0195), ΔBEef=–0.9 (IQR –2.0–0.4) and HCO3–act=–1.05 (IQR –2.25–0.35). For ventilatory parameters they were: ΔpO2=–8.3 mmHg (IQR –20.9–0.8) and ΔpCO2=–2.2 mmHg (IQR –4.2––0.4). For electrolytes balance the differences were: ΔNa+=1.55 mM/L (IQR 0.10–2.85), ΔK+=–0.120 mM/L (IQR –0.295–0.135) and ΔCl–=1.0 mM/L (IQR –1.0–3.0). Although the Δs might have caused misdiagnosis in 51 samples, Bland-Altman analysis revealed that only for pO2 the difference was of clinical significance (mean: –10.1 mmHg, ±1.96SD –58.5; +38.3). There was an important correlation between TAT and ΔpH (R=0.45, p<0.01) with the safest time delay for proper assessment being less than 39 minutes. Conclusions. Differences between POCT and CL results in ABG analysis may be clinically important and cause misdiagnosis, especially for pO2. POCT should be advised for ABG analysis due to the impact of TAT, which seems to be the most important for the analysis of pH.



2007 ◽  
Vol 292 (3) ◽  
pp. G899-G904 ◽  
Author(s):  
Markus Sjöblom ◽  
Olof Nylander

When running in vivo experiments, it is imperative to keep arterial blood pressure and acid-base parameters within the normal physiological range. The aim of this investigation was to explore the consequences of anesthesia-induced acidosis on basal and PGE2-stimulated duodenal bicarbonate secretion. Mice (strain C57bl/6J) were kept anesthetized by a spontaneous inhalation of isoflurane. Mean arterial blood pressure (MAP), arterial acid-base balance, and duodenal mucosal bicarbonate secretion (DMBS) were studied. Two intra-arterial fluid support strategies were used: a standard Ringer solution and an isotonic Na2CO3 solution. Duodenal single perfusion was used, and DMBS was assessed by back titration of the effluent. PGE2 was used to stimulate DMBS. In Ringer solution-infused mice, isoflurane-induced acidosis became worse with time. The blood pH was 7.15–7.21 and the base excess was about −8 mM at the end of experiments. The continuous infusion of Na2CO3 solution completely compensated for the acidosis. The blood pH was 7.36–7.37 and base excess was about 1 mM at the end of the experiment. Basal and PGE2-stimulated DMBS were markedly greater in animals treated with Na2CO3 solution than in those treated with Ringer solution. MAP was slightly higher after Na2CO3 solution infusion than after Ringer solution infusion. We concluded that isoflurane-induced acidosis markedly depresses basal and PGE2-stimulated DMBS as well as the responsiveness to PGE2, effects prevented by a continuous infusion of Na2CO3. When performing in vivo experiments in isoflurane-anesthetized mice, it is recommended to supplement with a Na2CO3 infusion to maintain a normal acid-base balance.



2005 ◽  
Vol 49 (3) ◽  
pp. 395
Author(s):  
Min Seok Koo ◽  
Hyung Min Son ◽  
Mi Ae Chung ◽  
Jong Hun Jun ◽  
Hee Koo Yoo


2009 ◽  
Vol 28 (10) ◽  
pp. 665-670 ◽  
Author(s):  
Nastaran Eizadi-Mood ◽  
Sam Alfred ◽  
Ahmad Yaraghi ◽  
Chanh Huynh ◽  
Ali Shayesteh Moghadam

The aim of this study was to compare simultaneously obtained arterial and capillary blood gas (CBG) values in comatose-poisoned patients presented with stable vital signs. Forty-five adult patients with a diagnosis of coma because of poisoning and stable vital signs were included in this prospective study. With respect to pH, the arterial blood gas (ABG) and CBG values correlated satisfactorily (r2 = .91) and had an acceptable limit of agreements (LOAs; —0.04 to 0.06). With respect to base excess (BE), the ABG and CBG values correlated well (r2 = .85), but their 95% LOAs seem too wide to allow substitution (—4.4 to 2.7). PCO2 (r2 = .61), HCO3 (r2 = .71) and PO2 (r2 = .53) correlated less reliably. A capillary PCO2 of 51.7 mm Hg had a sensitivity of 100% and a specificity of 95.12% for detecting hypercarbia (area under the curve, 0.99; 95% Confidence Interval, 0.90-0.99; p < .0001). In conclusion, CBG analysis for pH may be a reliable substitute for ABG analysis in the initial evaluation of patients presenting with coma and stable vital signs to the poisoning emergency department (PED). Subsequent ABG may be required in patients with capillary PCO2 > 51.7 mm Hg.



2018 ◽  
Vol 124 (5) ◽  
pp. 1341-1348 ◽  
Author(s):  
Keith R. Burgess ◽  
Samuel J. E. Lucas ◽  
Katie M. E. Burgess ◽  
Kate E. Sprecher ◽  
Joseph Donnelly ◽  
...  

Earlier studies have indicated an important role for cerebral blood flow in the pathophysiology of central sleep apnea (CSA) at high altitude, but were not decisive. To test the hypothesis that pharmacologically altering cerebral blood flow (CBF) without altering arterial blood gas (ABGs) values would alter the severity of CSA at high altitude, we studied 11 healthy volunteers (8M, 3F; 31 ± 7 yr) in a randomized placebo-controlled single-blind study at 5,050 m in Nepal. CBF was increased by intravenous (iv) acetazolamide (Az; 10 mg/kg) plus intravenous dobutamine (Dob) infusion (2–5 μg·kg−1·min−1) and reduced by oral indomethacin (Indo; 100 mg). ABG samples were collected and ventilatory responses to hypercapnia (HCVR) and hypoxia (HVR) were measured by rebreathing and steady-state techniques before and after drug/placebo. Duplex ultrasound of blood flow in the internal carotid and vertebral arteries was used to measure global CBF. The initial 3–4 h of sleep were recorded by full polysomnography. Intravenous Az + Dob increased global CBF by 37 ± 15% compared with placebo ( P < 0.001), whereas it was reduced by 21 ± 8% by oral Indo ( P < 0.001). ABGs and HVR were unchanged in both interventions. HCVR was reduced by 28% ± 43% ( P = 0.1) during intravenous Az ± Dob administration and was elevated by 23% ± 30% ( P = 0.05) by Indo. During intravenous Az + Dob, the CSA index fell from 140 ± 45 (control night) to 48 ± 37 events/h of sleep ( P < 0.001). Oral Indo had no significant effect on CSA. We conclude that increasing cerebral blood flow reduced the severity of CSA at high altitude; the likely mechanism is via a reduction in the background stimulation of central chemoreceptors.NEW & NOTEWORTHY This work is significant because it shows convincingly for the first time in healthy volunteers that increasing cerebral blood flow will reduce the severity of central sleep apnea in a high-altitude model, without the potentially confounding effects of altering partial pressure of arterial carbon dioxide or the ventilatory response to hypoxia. The proposed mechanism of action is that of increasing the removal of locally produced CO2from the central chemoreceptors, causing the reduction in hypercapnic ventilatory response, hence reducing loop gain.



1992 ◽  
Vol 262 (2) ◽  
pp. H517-H522 ◽  
Author(s):  
J. C. Stein ◽  
M. L. Ellsworth

The impact of an increased hemoglobin oxygen affinity (decreased P50) on oxygen transport was evaluated in capillaries of the retractor muscle under nonhypoxic (FIo2 = 0.30 and 0.21) and hypoxic (FIo2 = 0.10) conditions in hamsters with normal oxygen affinity [control; P50 = 26.1 +/- 1.0 (SD) mmHg, n = 12] and in hamsters with an increased oxygen affinity [treated; P50 = 16.2 +/- 1.6 (SD) mmHg, n = 7] induced by chronic short-term administration of sodium cyanate. Using in vivo video microscopy and computer-aided image analysis, we determined oxygen saturation (SO2) and associated hemodynamic parameters in both arteriolar (n = 30 control, 18 treated) and venular (n = 25 control, 17 treated) capillaries. In response to hypoxia, systemic arterial PO2 decreased to 29.6 +/- 6.0 (SD) mmHg in control animals and 24.7 +/- 3.8 (SD) mmHg in treated animals associated with abrupt decreases in systemic arterial blood pressure and increases in respiratory rate. The decrease in SO2 across the capillary network during nonhypoxic ventilation was 13.3% SO2 for control animals and 11.0% SO2 for treated animals. During hypoxic ventilation, the decrease in SO2 was 9.1% SO2 in control animals and 8.7% SO2 in treated animals. Hemodynamic parameters were not significantly different in the two groups during hypoxia. Estimated end-capillary PO2 was significantly lower in the treated animals. These data indicate that an increased oxygen affinity does not provide an obvious advantage for oxygen transport during hypoxia at the level of the capillary network in resting striated muscle; however, such an advantage might become apparent in the presence of an increased metabolic rate or a more severe hypoxic challenge.



1996 ◽  
Vol 16 (3) ◽  
pp. 62-73
Author(s):  
JM Anderson

Use of these algorithms does not eliminate the need to think. One must always evaluate each patient to determine if the algorithms are applicable. The algorithms provide a learning framework for any practitioner who is responsible for managing patients receiving mechanical ventilation. The effectiveness of any reference tool depends, to an extent, on the context in which it is applied. The use of these algorithms without an adequate understanding of the principles of gas exchange, acid-base balance, and the function of mechanical ventilators will probably not benefit the patient or the practitioner. The portable nature of these algorithms allows them to be used in the clinical setting. The ultimate goal, of course, is to replace the algorithms with the ability to make and justify mechanical ventilation decisions. Experience with these algorithms will also assist users in applying this approach with unfamiliar problems to find viable solutions.



1989 ◽  
Vol 77 (6) ◽  
pp. 651-655 ◽  
Author(s):  
S. D. Heys ◽  
A. C. Norton ◽  
C. R. Dundas ◽  
O. Eremin ◽  
K. Ferguson ◽  
...  

1. Rates of protein synthesis were measured, in vivo, in lung, liver, heart and skeletal muscle of young male rats. Groups of rats were exposed for 1 h duration to one of the following anaesthetic regimens: 1.4% halothane, 2.2% halothane, 1.4% halothane in 66% nitrous oxide, intravenous pentobarbitone (20 mg/kg) and intravenous midazolam (18 mg/kg) combined with fentanyl (2 μg/kg). Fractional rates of protein synthesis were determined by injecting [3H]phenylalanine (150 μmol/100 g body weight) 2. Liver protein synthesis was depressed significantly by all regimens, except midazolam/fentanyl, by up to 37.7% of control values. Lung protein synthesis was significantly reduced by all the anaesthetic agents by up to 30% of control rates 3. The effects of the anaesthetic agents on skeletal muscle and heart were small and not statistically significant 4. There was no evidence of ventilatory depression as manifested by changes in arterial blood gas partial pressures of CO2 and O2, except in the group treated with 2.2% halothane.



2016 ◽  
Vol 4 ◽  
pp. 205031211664804 ◽  
Author(s):  
Gisèle Irène Claudine Mbemba ◽  
Cheick Oumar Bagayoko ◽  
Marie-Pierre Gagnon ◽  
Louise Hamelin-Brabant ◽  
David A Simonyan

Objectives: The telehealth project EQUI-ResHuS (in French, Les TIC pour un accès Équitable aux Ressources Humaines en Santé) aimed to contribute to more equitable access to care and support practice in remote regions in Mali. This study explored the evolution of perceptions concerning telehealth among healthcare professionals in the four district health centres that participated in the EQUI-ResHus project and identified variables influencing their perceptions of telehealth impact on recruitment and retention of health professionals. Methods: One year after a first survey (T1), a second data collection (T2) was carried out among healthcare professionals using a 91-item questionnaire. Questions assessing telehealth use and perceptions and perceived impact on recruitment and retention of healthcare professionals were rated on a 5-point Likert scale. A total of 10 independent variables were considered for the analyses. A Wilcoxon signed-rank test was performed to detect differences between T1 and T2, and a bivariate linear regression model for repeated measures was carried out to assess the impact of independent variables on dependent variables. Results: There were no noticeable changes in perceptions related to telehealth influence on recruitment and retention. Only access to information and communication technology significantly differed between T1 and T2 according the Wilcoxon rank test (p = 0.001). Perceived influence of telehealth on recruitment and retention was mostly explained by attitude towards telehealth, perceived effect on recruitment and retention and barriers to recruitment and retention. Conclusion: Based on our results, telehealth was perceived as having a positive influence but mostly indirect influence on healthcare professional recruitment and retention. Also, there were no major changes after 1 year of telehealth use.



Author(s):  
Michael J Peake ◽  
Graham H White

As part of arterial blood gas analysis, base excess is often reported as a measure of non-respiratory acid-base disturbance. Most blood gas analysers offer the option of calculating either the base excess of the blood sample or the base excess of the extracellular fluid (ECF). We report a case that illustrates that selecting the physiologically appropriate parameter avoids the potential for misinterpretation of acid-base data. We recommend that the base excess of the ECF is the appropriate metabolic blood gas parameter for clinical use.



Sign in / Sign up

Export Citation Format

Share Document