scholarly journals INTERPRETATION OF CHANGES IN RMS DURING FATIGUING CYCLE EXERCISE MUST CONSIDER PEDAL FREQUENCY

2001 ◽  
Vol 33 (5) ◽  
pp. S263
Author(s):  
T J. Barstow ◽  
B W. Scheuermann ◽  
B C. Frazier ◽  
K D. Meadows
1997 ◽  
Vol 36 (04/05) ◽  
pp. 368-371
Author(s):  
R. Soma ◽  
Y. Yamamoto

Abstract.A new method was developed for continuous isotopic estimation of human whole body CO2 rate of appearance (Ra) during non-steady state exercise. The technique consisted of a breath-by-breath measurement of 13CO2 enrichment (E) and a real-time fuzzy logic feedback system which controlled NaH13CO3 infusion rate to achieve an isotopic steady state. Ra was estimated from the isotope infusion rate and body 13CO2 enrichment which was equal to E at the isotopic steady state. During a non-steady state incremental cycle exercise (5 w/min or 10 w/min), NaH13CO3 infusion rate was successfully increased by the action of feedback controller so as to keep E constant.


2002 ◽  
Vol 23 (4) ◽  
pp. 242-246 ◽  
Author(s):  
A. Vinet ◽  
S. Nottin ◽  
A. M. Lecoq ◽  
P. Obert

2004 ◽  
Vol 96 (2) ◽  
pp. 668-673 ◽  
Author(s):  
Thad E. Wilson ◽  
Robert Carter ◽  
Michael J. Cutler ◽  
Jian Cui ◽  
Michael L. Smith ◽  
...  

The purpose of this study was to identify whether baroreceptor unloading was responsible for less efficient heat loss responses (i.e., skin blood flow and sweat rate) previously reported during inactive compared with active recovery after upright cycle exercise (Carter R III, Wilson TE, Watenpaugh DE, Smith ML, and Crandall CG. J Appl Physiol 93: 1918-1929, 2002). Eight healthy adults performed two 15-min bouts of supine cycle exercise followed by inactive or active (no-load pedaling) supine recovery. Core temperature (Tcore), mean skin temperature (Tsk), heart rate, mean arterial blood pressure (MAP), thoracic impedance, central venous pressure ( n = 4), cutaneous vascular conductance (CVC; laser-Doppler flux/MAP expressed as percentage of maximal vasodilation), and sweat rate were measured throughout exercise and during 5 min of recovery. Exercise bouts were similar in power output, heart rate, Tcore, and Tsk. Baroreceptor loading and thermal status were similar during trials because MAP (90 ± 4, 88 ± 4 mmHg), thoracic impedance (29 ± 1, 28 ± 2 Ω), central venous pressure (5 ± 1, 4 ± 1 mmHg), Tcore (37.5 ± 0.1, 37.5 ± 0.1°C), and Tsk (34.1 ± 0.3, 34.2 ± 0.2°C) were not significantly different at 3 min of recovery between active and inactive recoveries, respectively; all P > 0.05. At 3 min of recovery, chest CVC was not significantly different between active (25 ± 6% of maximum) and inactive (28 ± 6% of maximum; P > 0.05) recovery. In contrast, at this time point, chest sweat rate was higher during active (0.45 ± 0.16 mg·cm-2·min-1) compared with inactive (0.34 ± 0.19 mg·cm-2·min-1; P < 0.05) recovery. After exercise CVC and sweat rate are differentially controlled, with CVC being primarily influenced by baroreceptor loading status while sweat rate is influenced by other factors.


2021 ◽  
Author(s):  
Sarah Ahmad ◽  
Rodney Hansen ◽  
Matthew Schmolesky

AbstractResearch suggests strong inter-relationships between physical exercise, levels of brain-derived neurotrophic factor (BDNF), levels of estrogen, and the menstrual cycle, and yet no single study has examined these factors collectively in humans. The current study assessed the effect of an acute bout of vigorous aerobic exercise (20 minutes of stationary cycling at 80% of heart rate reserve) on serum BDNF and estradiol in healthy, eumenorrheic women, ages 18-28. In addition, this study determined whether basal BDNF or the exercise-induced increase in BDNF varies throughout the menstrual cycle. Thirty-four subjects were assigned to an experimental (n = 27) or control condition (n = 7). Exercise transiently increased both estradiol (51.2%) and BDNF (23.6%), and basal levels of BDNF and estradiol predicted the magnitude of the exercise-induced increases. Basal BDNF did not vary significantly throughout the menstrual cycle. Exercise-induced changes in BDNF did not correlate with menstrual cycle day or basal estradiol. Basal estradiol and basal BDNF showed a marginally significant positive correlation. Taken together, these results indicate that brief, vigorous aerobic exercise is sufficient to elevate both BDNF and estradiol in healthy women and that the menstrual cycle dramatically influences the magnitude of exercise-induced changes in estradiol, but not BDNF


1993 ◽  
Vol 75 (4) ◽  
pp. 1513-1518 ◽  
Author(s):  
M. D. Vukovich ◽  
D. L. Costill ◽  
M. S. Hickey ◽  
S. W. Trappe ◽  
K. J. Cole ◽  
...  

Elevated plasma fatty acids have been shown to spare muscle glycogen during exercise. However, on the basis of recent findings, the saturation of fatty acids may influence this response. The purpose of this study was to determine whether saturated or unsaturated fatty acids affected muscle glycogenolysis to varying degrees during cycle exercise. Five healthy men completed three 60-min cycle ergometer trials (EX) at approximately 70% maximal O2 uptake (VO2max). Triglyceride levels were elevated by a fat feeding (FF) composed of 90% saturated fatty acids (heavy whipping cream, 90 g) or by the infusion of Intralipid (IL; Clintec Nutrition; 45 ml/h of 20% IL, 9.0 g), which was 85% unsaturated. A control trial (CON) consisted of a light breakfast (43 g carbohydrate and 1 g fat). Heparin (2,000 U) was administered 15 min before EX in FF and IL trials, resulting in one- and threefold increases in free fatty acid (FFA) levels in IL and FF, respectively. Pre-EX muscle glycogen did not differ. The utilization of muscle glycogen during 60 min of EX was less (P < 0.05) during the FF (60.0 +/- 5.2 mmol/kg wet wt) and IL (58.6 +/- 6.2 mmol/kg wet wt) compared with CON (81.8 +/- 7.5 mmol/kg wet wt). There was no difference between FF and IL in the amount of glycogen utilized. Serum triglyceride levels were greater (P < 0.05) at preheparin in FF (1.58 +/- 0.37 mmol/l) and IL (0.98 +/- 0.13 mmol/l) compared with CON (0.47 +/- 0.14 mmol/l).(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 66 (1) ◽  
pp. 336-341 ◽  
Author(s):  
S. P. Sady ◽  
M. W. Carpenter ◽  
P. D. Thompson ◽  
M. A. Sady ◽  
B. Haydon ◽  
...  

Our purpose was to determine if pregnancy alters the cardiovascular response to exercise. Thirty-nine women [29 +/- 4 (SD) yr], performed submaximal and maximal exercise cycle ergometry during pregnancy (antepartum, AP, 26 +/- 3 wk of gestation) and postpartum (PP, 8 +/- 2 wk). Neither maximal O2 uptake (VO2max) nor maximal heart rate (HR) was different AP and PP (VO2 = 1.91 +/- 0.32 and 1.83 +/- 0.31 l/min; HR = 182 +/- 8 and 184 +/- 7 beats/min, P greater than 0.05 for both). Cardiac output (Q, acetylene rebreathing technique) averaged 2.2 to 2.8 l/min higher AP (P less than 0.01) at rest and at each exercise work load. Increases in both HR and stroke volume (SV) contributed to the elevated Q at the lower exercise work loads, whereas an increased SV was primarily responsible for the higher Q at higher levels. The slope of the Q vs. VO2 relationship was not different AP and PP (6.15 +/- 1.32 and 6.18 +/- 1.34 l/min Q/l/min VO2, P greater than 0.05). In contrast, the arteriovenous O2 difference (a-vO2 difference) was lower at each exercise work load AP, suggesting that the higher Q AP was distributed to nonexercising vascular beds. We conclude that Q is greater and a-vO2 difference is less at all levels of exercise in pregnant subjects than in the same women postpartum but that the coupling of the increase in Q to the increase in systemic O2 demand (VO2) is not different.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 293 (2) ◽  
pp. E523-E530 ◽  
Author(s):  
H. J. Green ◽  
T. A. Duhamel ◽  
G. P. Holloway ◽  
J. W. Moule ◽  
J. Ouyang ◽  
...  

This study investigated the effects of a 16-h protocol of heavy intermittent exercise on the intrinsic activity and protein and isoform content of skeletal muscle Na+-K+-ATPase. The protocol consisted of 6 min of exercise performed once per hour at ∼91% peak aerobic power (V̇o2 peak) with tissue sampling from vastus lateralis before (B) and immediately after repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). Eleven untrained volunteers with a V̇o2 peak of 44.3 ± 2.3 ml·kg−1·min−1 participated in the study. Maximal Na+-K+-ATPase activity ( Vmax, in nmol·mg protein−1·h−1) as measured by the 3- O-methylfluorescein K+-stimulated phosphatase assay was reduced ( P < 0.05) by ∼15% with exercise regardless of the number of repetitions performed. In addition, Vmax at R9 and R16 was lower ( P < 0.05) than at R1 and R2. Vanadate-facilitated [3H]ouabain determination of Na+-K+-ATPase content (maximum binding capacity, pmol/g wet wt), although unaltered by exercise, increased ( P < 0.05) 8.3% by R9 with no further increase observed at R16. Assessment of relative changes in isoform abundance measured at B as determined by quantitative immunoblotting showed a 26% increase ( P < 0.05) in the α2-isoform by R2 and a 29% increase in α3 by R9. At R16, β3 was lower ( P < 0.05) than at R2 and R9. No changes were observed in α1, β1, or β2. It is concluded that repeated sessions of heavy exercise, although resulting in increases in the α2- and α3-isoforms and decreases in β3-isoform, also result in depression in maximal catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document