A Sensitive Assay Method of Furosemide in Plasma and Urine by High-Performance Liquid Chromotography

1982 ◽  
Vol 4 (4) ◽  
pp. 381-384 ◽  
Author(s):  
Walter Snedden ◽  
Jagdish N. Sharma ◽  
Peter G. Fernandez
2017 ◽  
Vol 19 (1) ◽  
pp. 63-68
Author(s):  
Dawan Shimbhu ◽  
Kohichi Kojima ◽  
Toshiharu Nagatsu

 Phenylethanolamine N-methyltransferase (PNMT) and non-specific N -methyltransferase  (EC 2.1.1.28) catalyze the N-methylation of aromatic amines. PNMT is specific for phenylethanolamines such as noradrenaline (NA). and catalyzes the step in catecholamine biosynthesis, forming adrenaline (AD) from NA. PNMT activity is high in adrenal gland, whereas non-specific N-methyltransferase is distributed in various tissues such as the lungs. Borchardt et al. first reported a method to detect PNMT activity by  high-performance liquid chromatography electrochemical detection (HPLC-EICD), which could demonstrate the activity only in the adrenal medulla and hypothalamus. Recently, Troeewicz et al. reported a highly sensitive assay method for PNMT using HPLC-EICD by which the activity in all regions of rat brains could be measured. The activity of non-specific N-methyltransferase in brain regions and peripheral tissues of the rat could be detected by a radioassay. However, there has been no repot on an assay method for non-specific N-methyltransferase using HPLC-EICD. In this paper, we describe a highly sensitive assay procedure for the activity of non-specific N-methyltransferase by high-performance reversed-phase ion pair chromatography with electrochemical detection. By this method, the non-specific N-methyltransferase activity could be determined in various rat brain regions and peripheral tissues.


1979 ◽  
Author(s):  
T Harada ◽  
M Ohki ◽  
M Niwa ◽  
S Iwanaga

Limulus hemocyte lysate contains a proclotting enzyme, which is transformed to the active clotting enzyme in the presence of gram-negative bacterial endotoxins. The clotting enzyme coagulates a clottable protein, named coagulogen, contained also in the lysate. This gelation reaction of the lysate, named Limulus test, has been widely employed as a simple and very sensitive assay method for endotoxins. We developed a new fluorogenic substrate, Boc-Leu-Gly-Arg-4-methylcoumarin amide, for Limulus clotting enzyme and established an enzymatic assay method for endotoxins, using the substrate. Because the endotoxin mediates the activation of proclotting enzyme in the lysate, the measurement of amidase activity could be applicable for quantitation of the endotoxins. In fact, the amidase activity determined fluorometrically increased by increasing concentration of E. coli 0111: B4 endotoxin added to the lysate, and a linear relationship between the toxin concentration and the activity was observed in the range of 5X10-6to 5xl0-2 µg endotoxin. The method was a fifty times more sensitive than that of the Limulus test and was very reproducible. However, the method was not directly applicable for the assay of endotoxins in circulating blood, as the amidase activity was strongly inhibited by antithrombin III and α2-plasmin inhibitor. Thus, some pretreatment with heat or chloroform on plasma samples before the assay was required.


Author(s):  
Vishal N Kushare ◽  
Sachin S Kushare

The present paper describes stability indicating high-performance thin-layer chromatography (HPTLC) assay method for Ozagrel in bulk drugs. The method employed TLC aluminium plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of toluene: methanol: triethylamine (6.5: 4.0: 0.1 v/v/v). The system was found to give compact spot for Ozagrel (Rf value of 0.40 ± 0.010). Densitometric analysis of Ozagrel was carried out in the absorbance mode at 280 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2 = 0.999 with respect to peak area in the concentration range 30 - 120 ng/spot. The developed HPTLC method was validated with respect to accuracy, precision, recovery and robustness. Also to determine related substance and assay determination of Ozagrel that can be used to evaluate the quality of regular production samples. The developed method can also be conveniently used for the assay determination of Ozagrel in pharmaceutical formulations. The limits of detection and quantitation were 4.069 and 12.332 ng/spot, respectively by height. Ozagrel was subjected to acid and alkali hydrolysis, oxidation, photochemical and thermal degradation. The drug undergoes degradation under acidic, basic, oxidation and heat conditions. This indicates that the drug is susceptible to acid, base hydrolysis, oxidation and heat. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of said drug. The proposed developed HPTLC method can be applied for identification and quantitative determination of Ozagrel in bulk drug and tablet formulation.


2019 ◽  
Vol 69 (12) ◽  
pp. 3590-3592
Author(s):  
Nela Bibire ◽  
Romeo Iulian Olariu ◽  
Luminita Agoroaei ◽  
Madalina Vieriu ◽  
Alina Diana Panainte ◽  
...  

Active pharmaceutical ingredients such as isoniazid, pyrazinamide and rifampicin are among the most important first-line anti-tuberculosis drugs. A simple, rapid and sensitive reversed phase-high performance liquid chromatographic assay method for the simultaneous determination of isoniazid, pyrazinamide and rifampicin has been developed. Separation of the interest compounds was achieved in a 10 min chromatographic run in gradient elution mode on a Zorbax SB-C18 stainless steel column (150 � 4 mm, 5 mm) using a guard column containing the same stationary phase. The gradient elution was carried out with a mobile phase of 10% CH3CN aqueous solution for channel A and 50% CH3CN in pH = 6.8 phosphate buffer (20 mM), to which 1.5 mL triethylamine were added for channel B. Quantification of the analyzed substances was carried out spectrophotometrically at 269 nm. Detection limits of 0.48 mg/L for isoniazid, 0.52 mg/L for pyrazinamide and 0.48 mg/L for rifampicin were established for the developed assay method. The present work showed that the proposed analysis method was advantageous for simple and rapid analysis of the active pharmaceutical ingredients in pharmaceuticals and biological fluids.


2016 ◽  
Vol 5 (03) ◽  
pp. 4862 ◽  
Author(s):  
Mathew George* ◽  
Lincy Joseph ◽  
Arpit Kumar Jain ◽  
Anju V.

A simple, sensitive, rapid and economic high performance thin layer chromatographic method and a mass spectroscopic assay method has been developed for the quantification of telmisartan and hydrochlorthiazide combination in human plasma. The internal standards and analytes were extracted from human plasma by solid-phase extraction with HLB Oasis1cc (30mg) catridges. The scanning and optimization for the samples are done using methanol: water (50:50). The samples were chromatographed using reverse phase chromatography with C-18 column of different manufacturers like Ascentis C18 (150×4. 6, 5µ) using the buffer system Acetonitrile: Buffer (80:20%v/v) which consist of 2±0. 1Mm ammonium format at a flow rate of 0. 7ml/min at a column oven temperature 35±10c. The internal standard used was hydrochlorthiazide13c1, d2 and telmisartand3. The extraction techniques include conditioning, loading, washing and elution, drying followed by reconstitution of the dried samples. The volume injected was 10µl with the retention time of 3-4 min for telmisartan, 1-2 min for hydrochlorthiazide and for the internal standards the retention time was 3-4 min for telmisartand3 and 1-2 min for hydrochlorthiazide c13d2. The rinsing solution was Acetonitrile: HPLC grade water in the ratio (50:50). The above developed method was validated using various parameters like selectivity and sensitivity, accuracy and precision, matrix effects, % recovery and various stability studies. The method was proved to be sensitive, accurate, precise and reproducible. The preparation showed high recovery for the quantitative determination of telmisartan and hydrochlorthiazide in human plasma.


Author(s):  
V.L.N. Balaji Gupta Tiruveedhi ◽  
Venkateswara Rao Battula ◽  
Kishore Babu Bonige ◽  
Tejeswarudu B.

This research work was designed to establish and validate a novel stability indicating RP-HPLC method for the combined determination of Benidipine hydrochloride (BHE) and Nebivolol hydrochloride (NHE) in bulk and tablets, dependent on ICH guidelines.The assay method to analyse BHE and NHE was optimized with isocratic elution using acetonitrile: 0.1M acetate buffer (45:55, pH 5.1), Lichrospher ODS RP-18 column and flow pace of 1 ml/min. Total time for single run was 14 min. The injection quantity was 20μl, and was detected at 249nm. The method was verified on a concentration series of 1.25-10μg/ml (NHE) and 1.0-10μg/ml (BHE) for precision, accuracy and linearity. The LOD values were 0.059µg/ml and 0.028µg/ml for NHE and BHE, respectively. The LOQ values were 0.196µg/ml for NHE and 0.094µg/ml for BHE. The recovery percentages were 98.60-100.11% (BHE) and 98.94-101.50% (NHE) with relative standard deviation 0.250-0.694% (BHE) and 0.183-0.400% (NHE). The method was also observed to be efficient, and was sufficiently specific to measure BHE and NHE in the presence of stress-produced degradation products.


Sign in / Sign up

Export Citation Format

Share Document