scholarly journals Reading the fine print

Nursing ◽  
2021 ◽  
Vol 51 (9) ◽  
pp. 54-56
Author(s):  
Lois Gerber
Keyword(s):  
Author(s):  
Margaret Jane Radin

Boilerplate—the fine-print terms and conditions that we become subject to when we click “I agree” online, rent an apartment, or enter an employment contract, for example—pervades all aspects of our modern lives. On a daily basis, most of us accept boilerplate provisions without realizing that should a dispute arise about a purchased good or service, the nonnegotiable boilerplate terms can deprive us of our right to jury trial and relieve providers of responsibility for harm. Boilerplate is the first comprehensive treatment of the problems posed by the increasing use of these terms, demonstrating how their use has degraded traditional notions of consent, agreement, and contract, and sacrificed core rights whose loss threatens the democratic order. This book examines attempts to justify the use of boilerplate provisions by claiming either that recipients freely consent to them or that economic efficiency demands them, and it finds these justifications wanting. It argues that our courts, legislatures, and regulatory agencies have fallen short in their evaluation and oversight of the use of boilerplate clauses. To improve legal evaluation of boilerplate, the book offers a new analytical framework, one that takes into account the nature of the rights affected, the quality of the recipient's consent, and the extent of the use of these terms. It goes on to offer possibilities for new methods of boilerplate evaluation and control, and concludes by discussing positive steps that NGOs, legislators, regulators, courts, and scholars could take to bring about better practices.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 120-127 ◽  
Author(s):  
Chihiro Ohye ◽  
Tohru Shibazaki ◽  
Junji Ishihara ◽  
Jie Zhang

Object. The effects of gamma thalamotomy for parkinsonian and other kinds of tremor were evaluated. Methods. Thirty-six thalamotomies were performed in 31 patients by using a 4-mm collimator. The maximum dose was 150 Gy in the initial six cases, which was reduced to 130 Gy thereafter. The longest follow-up period was 6 years. The target was determined on T2-weighted and proton magnetic resonance (MR) images. The point chosen was in the lateral-most part of the thalamic ventralis intermedius nucleus. This is in keeping with open thalamotomy as practiced at the authors' institution. In 15 cases, gamma thalamotomy was the first surgical procedure. In other cases, previous therapeutic or vascular lesions were visible to facilitate targeting. Two types of tissue reaction were onserved on MR imaging: a simple oval shape and a complex irregular shape. Neither of these changes affected the clinical course. In the majority of cases, the tremor subsided after a latent interval of approximately 1 year after irradiation. The earliest response was demonstrated at 3 months. In five cases the tremor remained. In four of these cases, a second radiation session was administered. One of these four patients as well as another patient with an unsatisfactory result underwent open thalamotomy with microrecording. In both cases, depth recording adjacent to the necrotic area revealed normal neuronal activity, including the rhythmic discharge of tremor. Minor coagulation was performed and resulted in immediate and complete arrest of the remaining tremor. Conclusions. Gamma thalamotomy for Parkinson's disease seems to be an alternative useful method in selected cases.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 113-119 ◽  
Author(s):  
D. Hung-Chi Pan ◽  
Wan-Yuo Guo ◽  
Wen-Yuh Chung ◽  
Cheng-Ying Shiau ◽  
Yue-Cune Chang ◽  
...  

Object. A consecutive series of 240 patients with arteriovenous malformations (AVMs) treated by gamma knife radiosurgery (GKS) between March 1993 and March 1999 was evaluated to assess the efficacy and safety of radiosurgery for cerebral AVMs larger than 10 cm3 in volume. Methods. Seventy-six patients (32%) had AVM nidus volumes of more than 10 cm3. During radiosurgery, targeting and delineation of AVM nidi were based on integrated stereotactic magnetic resonance (MR) imaging and x-ray angiography. The radiation treatment was performed using multiple small isocenters to improve conformity of the treatment volume. The mean dose inside the nidus was kept between 20 Gy and 24 Gy. The margin dose ranged between 15 to 18 Gy placed at the 55 to 60% isodose centers. Follow up ranged from 12 to 73 months. There was complete obliteration in 24 patients with an AVM volume of more than 10 cm3 and in 91 patients with an AVM volume of less than 10 cm3. The latency for complete obliteration in larger-volume AVMs was significantly longer. In Kaplan—Meier analysis, the complete obliteration rate in 40 months was 77% in AVMs with volumes between 10 to 15 cm3, as compared with 25% for AVMs with a volume of more than 15 cm3. In the latter, the obliteration rate had increased to 58% at 50 months. The follow-up MR images revealed that large-volume AVMs had higher incidences of postradiosurgical edema, petechiae, and hemorrhage. The bleeding rate before cure was 9.2% (seven of 76) for AVMs with a volume exceeding 10 cm3, and 1.8% (three of 164) for AVMs with a volume less than 10 cm3. Although focal edema was more frequently found in large AVMs, most of the cases were reversible. Permanent neurological complications were found in 3.9% (three of 76) of the patients with an AVM volume of more than 10 cm3, 3.8% (three of 80) of those with AVM volume of 3 to 10 cm3, and 2.4% (two of 84) of those with an AVM volume less than 3 cm3. These differences in complications rate were not significant. Conclusions. Recent improvement of radiosurgery in conjunction with stereotactic MR targeting and multiplanar dose planning has permitted the treatment of larger AVMs. It is suggested that gamma knife radiosurgery is effective for treating AVMs as large as 30 cm3 in volume with an acceptable risk.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 96-101 ◽  
Author(s):  
Jong Hee Chang ◽  
Jin Woo Chang ◽  
Yong Gou Park ◽  
Sang Sup Chung

Object. The authors sought to evaluate the effects of gamma knife radiosurgery (GKS) on cerebral arteriovenous malformations (AVMs) and the factors associated with complete occlusion. Methods. A total of 301 radiosurgical procedures for 277 cerebral AVMs were performed between December 1988 and December 1999. Two hundred seventy-eight lesions in 254 patients who were treated with GKS from May 1992 to December 1999 were analyzed. Several clinical and radiological parameters were evaluated. Conclusions. The total obliteration rate for the cases with an adequate radiological follow up of more than 2 years was 78.9%. In multivariate analysis, maximum diameter, angiographically delineated shape of the AVM nidus, and the number of draining veins significantly influenced the result of radiosurgery. In addition, margin radiation dose, Spetzler—Martin grade, and the flow pattern of the AVM nidus also had some influence on the outcome. In addition to the size, topography, and radiosurgical parameters of AVMs, it would seem to be necessary to consider the angioarchitectural and hemodynamic aspects to select proper candidates for radiosurgery.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 90-92 ◽  
Author(s):  
Mark E. Linskey

✓ By definition, the term “radiosurgery” refers to the delivery of a therapeutic radiation dose in a single fraction, not simply the use of stereotaxy. Multiple-fraction delivery is better termed “stereotactic radiotherapy.” There are compelling radiobiological principles supporting the biological superiority of single-fraction radiation for achieving an optimal therapeutic response for the slowly proliferating, late-responding, tissue of a schwannoma. It is axiomatic that complication avoidance requires precise three-dimensional conformality between treatment and tumor volumes. This degree of conformality can only be achieved through complex multiisocenter planning. Alternative radiosurgery devices are generally limited to delivering one to four isocenters in a single treatment session. Although they can reproduce dose plans similar in conformality to early gamma knife dose plans by using a similar number of isocenters, they cannot reproduce the conformality of modern gamma knife plans based on magnetic resonance image—targeted localization and five to 30 isocenters. A disturbing trend is developing in which institutions without nongamma knife radiosurgery (GKS) centers are championing and/or shifting to hypofractionated stereotactic radiotherapy for vestibular schwannomas. This trend appears to be driven by a desire to reduce complication rates to compete with modern GKS results by using complex multiisocenter planning. Aggressive advertising and marketing from some of these centers even paradoxically suggests biological superiority of hypofractionation approaches over single-dose radiosurgery for vestibular schwannomas. At the same time these centers continue to use the term radiosurgery to describe their hypofractionated radiotherapy approach in an apparent effort to benefit from a GKS “halo effect.” It must be reemphasized that as neurosurgeons our primary duty is to achieve permanent tumor control for our patients and not to eliminate complications at the expense of potential late recurrence. The answer to minimizing complications while maintaining maximum tumor control is improved conformality of radiosurgery dose planning and not resorting to homeopathic radiosurgery doses or hypofractionation radiotherapy schemes.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 68-73 ◽  
Author(s):  
Pierre-Hugues Roche ◽  
Jean Régis ◽  
Henry Dufour ◽  
Henri-Dominique Fournier ◽  
Christine Delsanti ◽  
...  

Object. The authors sought to assess the functional tolerance and tumor control rate of cavernous sinus meningiomas treated by gamma knife radiosurgery (GKS). Methods. Between July 1992 and October 1998, 92 patients harboring benign cavernous sinus meningiomas underwent GKS. The present study is concerned with the first 80 consecutive patients (63 women and 17 men). Gamma knife radiosurgery was performed as an alternative to surgical removal in 50 cases and as an adjuvant to microsurgery in 30 cases. The mean patient age was 49 years (range 6–71 years). The mean tumor volume was 5.8 cm3 (range 0.9–18.6 cm3). On magnetic resonance (MR) imaging the tumor was confined in 66 cases and extensive in 14 cases. The mean prescription dose was 28 Gy (range 12–50 Gy), delivered with an average of eight isocenters (range two–18). The median peripheral isodose was 50% (range 30–70%). Patients were evaluated at 6 months, and at 1, 2, 3, 5, and 7 years after GKS. The median follow-up period was 30.5 months (range 12–79 months). Tumor stabilization after GKS was noted in 51 patients, tumor shrinkage in 25 patients, and enlargement in four patients requiring surgical removal in two cases. The 5-year actuarial progression-free survival was 92.8%. No new oculomotor deficit was observed. Among the 54 patients with oculomotor nerve deficits, 15 improved, eight recovered, and one worsened. Among the 13 patients with trigeminal neuralgia, one worsened (contemporary of tumor growing), five remained unchanged, four improved, and three recovered. In a patient with a remnant surrounding the optic nerve and preoperative low vision (3/10) the decision was to treat the lesion and deliberately sacrifice the residual visual acuity. Only one transient unexpected optic neuropathy has been observed. One case of delayed intracavernous carotid artery occlusion occurred 3 months after GKS, without permanent deficit. Another patient presented with partial complex seizures 18 months after GKS. All cases of tumor growth and neurological deficits observed after GKS occurred before the use of GammaPlan. Since the initiation of systematic use of stereotactic MR imaging and computer-assisted modern dose planning, no more side effects or cases of tumor growth have occurred. Conclusions. Gamma knife radiosurgery was found to be an effective low morbidity—related tool for the treatment of cavernous sinus meningioma. In a significant number of patients, oculomotor functional restoration was observed. The treatment appears to be an alternative to surgical removal of confined enclosed cavernous sinus meningioma and should be proposed as an adjuvant to surgery in case of extensive meningiomas.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 47-56 ◽  
Author(s):  
Wen-Yuh Chung ◽  
David Hung-Chi Pan ◽  
Cheng-Ying Shiau ◽  
Wan-Yuo Guo ◽  
Ling-Wei Wang

Object. The goal of this study was to elucidate the role of gamma knife radiosurgery (GKS) and adjuvant stereotactic procedures by assessing the outcome of 31 consecutive patients harboring craniopharyngiomas treated between March 1993 and December 1999. Methods. There were 31 consecutive patients with craniopharyngiomas: 18 were men and 13 were women. The mean age was 32 years (range 3–69 years). The mean tumor volume was 9 cm3 (range 0.3–28 cm3). The prescription dose to the tumor margin varied from 9.5 to 16 Gy. The visual pathways received 8 Gy or less. Three patients underwent stereotactic aspiration to decompress the cystic component before GKS. The tumor response was classified by percentage reduction of tumor volume as calculated based on magnetic resonance imaging studies. Clinical outcome was evaluated according to improvement and dependence on replacement therapy. An initial postoperative volume increase with enlargement of a cystic component was found in three patients. They were treated by adjuvant stereotactic aspiration and/or Ommaya reservoir implantation. Tumor control was achieved in 87% of patients and 84% had fair to excellent clinical outcome in an average follow-up period of 36 months. Treatment failure due to uncontrolled tumor progression was seen in four patients at 26, 33, 49, and 55 months, respectively, after GKS. Only one patient was found to have a mildly restricted visual field; no additional endocrinological impairment or neurological deterioration could be attributed to the treatment. There was no treatment-related mortality. Conclusions. Multimodality management of patients with craniopharyngiomas seemed to provide a better quality of patient survival and greater long-term tumor control. It is suggested that GKS accompanied by adjuvant stereotactic procedures should be used as an alternative in treating recurrent or residual craniopharyngiomas if further microsurgical excision cannot promise a cure.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 37-41 ◽  
Author(s):  
William F. Regine ◽  
Roy A. Patchell ◽  
James M. Strottmann ◽  
Ali Meigooni ◽  
Michael Sanders ◽  
...  

Object. This investigation was performed to determine the tolerance and toxicities of split-course fractionated gamma knife radiosurgery (FSRS) given in combination with conventional external-beam radiation therapy (CEBRT). Methods. Eighteen patients with previously unirradiated, gliomas treated between March 1995 and January 2000 form the substrate of this report. These included 11 patients with malignant gliomas, six with low-grade gliomas, and one with a recurrent glioma. They were stratified into three groups according to tumor volume (TV). Fifteen were treated using the initial FSRS dose schedule and form the subject of this report. Group A (four patients), had TV of 5 cm3 or less (7 Gy twice pre- and twice post-CEBRT); Group B (six patients), TV greater than 5 cm3 but less than or equal to 15 cm3 (7 Gy twice pre-CEBRT and once post-CEBRT); and Group C (five patients), TV greater than 15 cm3 but less than or equal to 30 cm3 (7 Gy once pre- and once post-CEBRT). All patients received CEBRT to 59.4 Gy in 1.8-Gy fractions. Dose escalation was planned, provided the level of toxicity was acceptable. All patients were able to complete CEBRT without interruption or experiencing disease progression. Unacceptable toxicity was observed in two Grade 4/Group B patients and two Grade 4/Group C patients. Eight patients required reoperation. In three (38%) there was necrosis without evidence of tumor. Neuroimaging studies were available for evaluation in 14 patients. Two had a partial (≥ 50%) reduction in volume and nine had a minor (> 20%) reduction in size. The median follow-up period was 15 months (range 9–60 months). Six patients remained alive for 3 to 60 months. Conclusions. The imaging responses and the ability of these patients with intracranial gliomas to complete therapy without interruption or experiencing disease progression is encouraging. Excessive toxicity derived from combined FSRS and CEBRT treatment, as evaluated thus far in this study, was seen in patients with Group B and C lesions at the 7-Gy dose level. Evaluation of this novel treatment strategy with dose modification is ongoing.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 239-242 ◽  
Author(s):  
R. Foroni ◽  
G. Gambraini ◽  
U. Danesi ◽  
M. Mauri ◽  
E. Pompilio ◽  
...  

✓ During the past two decades, the progress in computerized treatment planning systems has led to more accurate imaging and therapy by using the gamma knife, especially with the smallest collimators (4 mm). However, the ionization chambers that have been used to calibrate the gamma knife are not useful with the smallest collimators because the chambers are too big compared with the irradiated volume. Therefore, it is important to develop more suitable dosimeters. This study proposes a new dosimeter method. The FriXyGel method proposed here is based on a phantom dosimeter, an acquisition chain, and dedicated software. This dosimeter uses an agarose gel into which a ferrous sulphate solution (Fricke solution) and a metal ion indicator (xylenol orange) are incorporated. The absorbed dose is detected through measurements of visible light transmission, imaged by means of a charge-coupled device camera provided with a suitable optical filter. Gel layers are imaged before and after irradiation, and the differences in light absorption are related to the absorbed dose. By choosing convenient thickness of gel layers and by building up a phantom with different gel slices, it is possible to obtain a three-dimensional (3D) representation of the absorbed dose. The final 3D representation is reached after several mathematical processes have been applied to the images. The first step identifies and reduces all factors that could alter the original data, such as nonuniformity in illumination. Then, after calibration procedures, it is possible to obtain absorbed dose values and to discover their 3D representation. This goal has been reached by developing appropriate software that performs all the calculations necessary for spatial representation routines and prompt comparison with theoretical calculations.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 184-188 ◽  
Author(s):  
Gerald Langmann ◽  
Gerhard Pendl ◽  
Georg Papaefthymiou ◽  
Helmuth Guss ◽  

Object. The authors report their experience using gamma knife radiosurgery (GKS) to treat uveal melanomas. Methods. Between 1992 and 1998, 60 patients were treated with GKS at a prescription dose between 45 Gy and 80 Gy. The mean diameter of the tumor base was 12.2 mm (range 3–22 mm). The mean height of the tumor prominence was 6.7 mm (range 3–12 mm). The eye was immobilized. The follow-up period ranged from 16 to 94 months. Tumor regression was achieved in 56 (93%) of 60 patients. There were four recurrences followed by enucleation. The severe side effect of neovascular glaucoma developed in 21 (35%) patients in a high-dose group with larger tumors and in proximity to the ciliary body. A reduction in the prescription dose to 40 Gy or less and excluding treatment to tumors near the ciliary body decreased the rate of glaucoma without affecting the rate of tumor control. Conclusions. Gamma knife radiosurgery at a prescription dose of 45 Gy or more can achieve tumor regression in 85% of the uveal melanomas treated. Neovascular glaucoma can develop in patients when using this dose in tumors near the ciliary body. It is advised that such tumors be avoided and that the prescription dose be reduced to 40 Gy.


Sign in / Sign up

Export Citation Format

Share Document