Side Population Hematopoietic Stem Cells Promote Wound Healing in Diabetic Mice

2007 ◽  
Vol 120 (2) ◽  
pp. 407-411 ◽  
Author(s):  
Rodney K. Chan ◽  
Evan Garfein ◽  
Paul R. Gigante ◽  
Perry Liu ◽  
Riaz A. Agha ◽  
...  
2013 ◽  
Vol 11 (1) ◽  
pp. 625-633 ◽  
Author(s):  
Philippe Brunet de la Grange ◽  
Marija Vlaski ◽  
Pascale Duchez ◽  
Jean Chevaleyre ◽  
Veronique Lapostolle ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (2) ◽  
pp. e1-e9 ◽  
Author(s):  
Isao Kobayashi ◽  
Hiromasa Ono ◽  
Tadaaki Moritomo ◽  
Koichiro Kano ◽  
Teruyuki Nakanishi ◽  
...  

Abstract Hematopoiesis in teleost fish is maintained in the kidney. We previously reported that Hoechst dye efflux activity of hematopoietic stem cells (HSCs) is highly conserved in vertebrates, and that Hoechst can be used to purify HSCs from teleost kidneys. Regulatory molecules that are strongly associated with HSC activity may also be conserved in vertebrates. In this study, we identified evolutionarily conserved molecular components in HSCs by comparing the gene expression profiles of zebrafish, murine, and human HSCs. Microarray data of zebrafish kidney side population cells (zSPs) showed that genes involved in cell junction and signal transduction tended to be up-regulated in zSPs, whereas genes involved in DNA replication tended to be down-regulated. These properties of zSPs were similar to those of mammalian HSCs. Overlapping gene expression analysis showed that 40 genes were commonly up-regulated in these 3 HSCs. Some of these genes, such as egr1, gata2, and id1, have been previously implicated in the regulation of HSCs. In situ hybridization in zebrafish kidney revealed that expression domains of egr1, gata2, and id1 overlapped with that of abcg2a, a marker for zSPs. These results suggest that the overlapping genes identified in this study are regulated in HSCs and play important roles in their functions.


2019 ◽  
Vol 10 ◽  
Author(s):  
Babak Arjmand ◽  
Parisa Goodarzi ◽  
Hamid Reza Aghayan ◽  
Moloud Payab ◽  
Fakher Rahim ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2441-2441
Author(s):  
Diana Tronik-Le Roux ◽  
Johnny Nehme ◽  
Arthur Simonnet ◽  
Pierre Vaigot ◽  
Marie Anne Nicola ◽  
...  

Abstract Hematopoietic stem cells (HSC) are indispensable for the integrity of complex and long-lived organisms since they can reconstitute the hematopoietic system for life and achieve long term repopulation of lethally irradiated mice. Exposure of an organism to ionizing radiation (IR) causes dose dependant bone marrow suppression and challenge the replenishment capacity of HSC. Yet, the precise damages that are generated remain largely unexplored. To better understand these effects, phenotypic and functional changes in the stem/progenitor compartments of sublethally irradiated mice were monitored over a ten week period after radiation exposure. We report that shortly after sublethal IR-exposure, HSC, defined by their repopulating ability, still segregate in the Hoechst dye excluding side population (SP); yet, their Sca-1 (S) and c-Kit (K) expression levels are increased and severely reduced, respectively, with a concurrent increase in the proportion of SPSK cells positive for established indicators of HSC presence: CD150+/CD105+ and Tie2+. Virtually all HSCs quickly but transiently mobilize to replenish the bone marrow of myelo-ablated mice. Ten weeks after, whereas bone marrow cellularity has recovered and hematopoietic homeostasis is restored, major phenotypic modifications can be observed within the c-Kit+ Sca-1+ Lin−/low (KSL) stem/progenitor compartment: CD150+/Flk2− and Flk2+ KSL cell frequencies are increased and dramatically reduced, respectively. CD150+ KSL cells also show impaired reconstitution capacity, accrued γ-H2AX foci and increased tendency to apoptosis. This demonstrates that the KSL compartment is not properly restored 10 weeks after sublethal exposure, and that long-term IR-induced injury to the bone marrow proceeds, at least partially, through direct damage to the stem cell pool. Since thrombopoietin (TPO) has been shown to reduce haematopoietic injury when administered immediately after exposure to radiations, we asked whether TPO could restore the permanent IR-induced damage we observed in the HSC compartment. We first found in competitive transplant experiments that a single TPO administration rescued the impaired reconstitution capacity of HSC’s from animals exposed to sublethal IR. In addition, we observed that TPO injection right after irradiation considerably attenuates IR-induced long-term injury to the stem/progenitor compartment. Finally, the use of marrow cells from transgenic ubiquitous luciferase-expressing donors combined with bioluminescence imaging technology provided a valuable strategy that allowed visualizing HSC homing improvements of TPO-treated compared to untreated irradiated donors, and enabled the identification of a preferential cellular expansion sites which were inaccessible to investigation in most studies. Electronic microscopy analysis revealed that these sites show also differential activity of megakaryocytopoiesis with marked differences in the proplatelets reaching the vascular sinus. Altogether, our data provide novel insights in the cellular response of HSC to IR and the beneficial effects of TPO administration to these cells.


2020 ◽  
Author(s):  
Yanan Kong ◽  
Liuhanghang Cheng ◽  
Min Xuan ◽  
Hao Ding ◽  
Biao Cheng

Abstract Background Hematopoietic stem cells(HSCs) and mesenchymal stem cells(MSCs) can participate in wound healing. However, very few studies had shown HSCs and MSCs could arrive to the wound and differentiate into tissues. In this study, we intend to investigate the role of bone marrow HSCs and MSCs in wound healing. Methods We first removed the bone marrow of mice by irradiation. Furthermore, we injected different colours of fluorescent HSCs and MSCs into the tail vein of irradiated mice to reconstruct bone marrow function. We prepared wound models on the back of these mice. In vivo imaging and immunohistochemical staining were used to track the expression of fluorescent protein. Results HSCs and MSCs have been isolated and cultured. HSCs expressed expressed Sca1, not lineage, CD34 or CD48. MSCs expressed expressed CD29 and CD44,not CD34 or CD45. HSCs labeled with green fluorescent protein reached the wound and co-expressed with desmin and α-SMA. MSCs didn’t stay on the wound. Conclusions The results show HSCs in the bone marrow of mice can directly participate in wound healing and differentiate into pericytes and myofibroblasts.


2019 ◽  
Vol 235 (3) ◽  
pp. 2366-2376 ◽  
Author(s):  
Fariba Zafari ◽  
Sadegh Shirian ◽  
Morteza Sadeghi ◽  
Shahram Teimourian ◽  
Mehrdad Bakhtiyari

Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4487-4495 ◽  
Author(s):  
Naoyuki Uchida ◽  
Brad Dykstra ◽  
Kristin Lyons ◽  
Frank Leung ◽  
Merete Kristiansen ◽  
...  

Abstract Primitive hematopoietic cells from several species are known to efflux both Hoechst 33342 and Rhodamine-123. We now show that murine hematopoietic stem cells (HSCs) defined by long-term multilineage repopulation assays efflux both dyes variably according to their developmental or activation status. In day 14.5 murine fetal liver, very few HSCs efflux Hoechst 33342 efficiently, and they are thus not detected as “side population” (SP) cells. HSCs in mouse fetal liver also fail to efflux Rhodamine-123. Both of these features are retained by most of the HSCs present until 4 weeks after birth but are reversed by 8 weeks of age or after a new HSC population is regenerated in adult mice that receive transplants with murine fetal liver cells. Activation of adult HSCs in vivo following 5-fluorouracil treatment, or in vitro with cytokines, induces variable losses in Rhodamine-123 and Hoechst 33342 efflux activities, and HSCs from mdr-1a/1b-/- mice show a dramatic decrease in Rhodamine-123 efflux ability. Thus, the Rhodamine-123 and Hoechst 33342 efflux properties of murine HSCs fluctuate in the same fashion as a number of other HSC markers, suggesting these are regulated by a common control mechanism that operates independently of that regulating the regenerative function of HSCs. (Blood. 2004;103:4487-4495)


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 727-727 ◽  
Author(s):  
Takafumi Yokota ◽  
Kenji Oritani ◽  
Stefan Butz ◽  
Koichi Kokame ◽  
Paul W Kincade ◽  
...  

Abstract Hematopoietic stem cells (HSC) are an important cell type with the capacity for self-renewal as well as differentiation into multi-lineage blood cells, maintaining the immune system throughout life. Many studies have attempted to identify unique markers associated with these extremely rare cells. In bone marrow of adult mice, the Lin-c-kitHi Sca1+ CD34−/Lo Thy1.1Lo subset is known to include HSC with long-term repopulating capacity. However, several of these parameters differ between strains of mice, change dramatically during developmental age and/or are expressed on many non-HSC during inflammation. Efficient HSC-based therapies and the emerging field of regenerative medicine will benefit from learning more about what defines stem cells. We previously determined that the most primitive cells with lymphopoietic potential first develop in the paraaortic splanchnopleura/aorta-gonad-mesonephros (AGM) region of embryos using Rag1/GFP knock-in mice. We also reported that Rag1/GFP-c-kitHi Sca1+ cells derived from E14.5 fetal liver (FL) reconstituted lympho-hematopoiesis in lethally irradiated adults, while Rag1/GFPLo c-kitHi Sca1+ cells transiently contributed to T and B lymphopoiesis. To extend those findings, microarray analyses were conducted to search for genes that characterize the initial transition of fetal HSC to primitive lymphopoietic cells. The comparisons involved mRNA from Rag1Lo ckitHi Sca1+, early lymphoid progenitors (ELP) and the HSC-enriched Rag1-ckitHi Sca1+ fraction isolated from E14.5 FL. While genes potentially related to early lymphopoiesis were discovered, our screen also identified genes whose expression seemed to correlate with HSC. Among those, endothelial cell-selective adhesion molecule (ESAM) attracted attention because of its conspicuous expression in the HSC fraction and sharp down-regulation on differentiation to ELP. ESAM was originally identified as an endothelial cell-specific protein, but expression on megakaryocytes and platelets was also reported (J. Biol. Chem., 2001, 2002). Flow cytometry analyses with anti-ESAM antibodies showed that the HSC-enriched Rag1-c-kitHi Sca1+ fraction could be subdivided into two on the basis of ESAM levels. The subpopulation with the high density of ESAM was enriched for c-kitHi Sca1Hi cells, while ones with negative or low levels of ESAM were found in the c-kitHi Sca1Lo subset. Among endothelial-related antigens on HSC, CD34 and CD31/PECAM1 were uniformly present on Rag1-c-kitHi Sca1+ cells in E14.5 FL and neither resolved into ESAMHi and ESAM−/Lo fractions. Expression profiles of Endoglin and Tie2 partially correlate with ESAM. The primitive ESAMHi fraction uniformly expressed high levels of Endoglin and Tie2, but many of the more differentiated ESAM−/Lo cells still retained the two markers. ESAM expression correlated well with HSC activity. Cells in the ESAMHi Rag1-ckitHi Sca1+ fraction formed more and larger colonies than those in the ESAM-/Lo Rag1-ckitHi Sca1+ fraction. Particularly, most CFU-Mix, primitive progenitors with both myeloid and erythroid potential, were found in the ESAMHi fraction. In limiting dilution stromal cell co-cultures, we found that 1 in 2.1 ESAMHi Rag1-ckitHi Sca1+ cells and 1 in 3.5 ESAM−/Lo Rag1-ckitHi Sca1+ cells gave rise to blood cells. However, while only 1 in 125 ESAM−/Lo Rag1-ckitHi Sca1+ cells were lymphopoietic under these conditions, 1 in 8 ESAMHi Rag1-ckitHi Sca1+ cells produced CD19+ B lineage cells. In long-term reconstituting assays, ESAMHi Rag1-ckitHi Sca1+ cells contributed highly to the multi-lineage recovery of lympho-hematopoiesis in recipients, but no chimerism was detected in mice transplanted with ESAM−/Lo Rag1-ckitHi Sca1+ cells. These results suggested that HSC in E14.5 FL are exclusively present in the ESAMHi fraction. Tie2+ c-kit+ lympho-hematopoietic cells of E10.5 AGM also expressed high levels of ESAM. Furthermore, ESAM expression in adult bone marrow was detected on primitive progenitors and cells in the side population within the Lin-ckitHi Sca1+ fraction. Interestingly, the expression was up-regulated in aged mice. Based on these observations, we conclude that ESAM marks HSC throughout life in mice. We also observed that many of human cord blood CD34+ CD38− cells express ESAM, suggesting potential application for the purification of human HSC.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Jinglian Yan ◽  
Guodong Tie ◽  
Shouying Wang ◽  
Amanda Tutto ◽  
Natale DeMarco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document