Hematopoietic Stem Cells Mobilization and Immune Response in Tumor-Bearing Mice

2004 ◽  
Vol 52 (5) ◽  
pp. 523-530 ◽  
Author(s):  
Jeffrey S. Isenberg
2020 ◽  
Author(s):  
Jicong Du ◽  
Penglin Xia ◽  
Yuan Gao ◽  
Ying Cheng ◽  
Ruling Liu ◽  
...  

Abstract Background: Hematopoiesis and the differentiation of HSC have been proved to not only play important roles in cancer progression but also be changed or reprogrammed by the tumor microenvironment itself. In this study, we investigated the changes of HSCs differentiation in advanced tumor-bearing mice. Methods: The tumor-bearing mice model was established by subcutaneously inoculating with xenografts of B16-F10 mouse melanoma cells into the right back of male wild-type C57BL/6 mice. Hematopoietic stem cells and multilineage differentiation were evaluated using blood routine, HE-staining, flow cytometry assay and HSCs culture techniques. Results: The multilineage differentiation of hematopoietic stem cells was reprogrammed in vivo . Especially, the differentiations of megakaryocyte and erythrocyte were blocked , while myeloid cell and lymphoid cell differentiation was encouraged in advanced tumor-bearing mice. Conclusion: In this study we showed the potential mechanism of hematopoietic disorder in tumor condition from a respective of hematopoietic stem cell and multilineage differentiation, which provided new knowledge regarding cachexia.


2008 ◽  
Vol 180 (12) ◽  
pp. 8168-8175 ◽  
Author(s):  
Ulrike Baranyi ◽  
Birgit Linhart ◽  
Nina Pilat ◽  
Martina Gattringer ◽  
Jessamyn Bagley ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2465-2465
Author(s):  
Ksenia Magidey ◽  
Ksenya Kveler ◽  
Rachelly Normand ◽  
Tongwu Zhang ◽  
Michael Timaner ◽  
...  

Metastasis is the major cause of death in cancer patients. Recent studies have demonstrated that the crosstalk between different host and tumor cells in the tumor microenvironment regulates tumor progression and metastasis. Specifically, immune cell myeloid skewing is a prominent promoter of metastasis. While previous studies have demonstrated that the recruitment of myeloid cells to tumors is a critical step in dictating tumor fate, the reservoir of these cells in the bone marrow (BM) compartment and their differentiation pattern has not been explored. Here we utilized a unique model system consisting of tumor cell clones with low and high metastatic potential (met-low and met-high, respectively) derived from melanoma and breast carcinoma cell lines. Hematopoietic stem cells (HSCs) and their early progenitor subset were defined as Lin-/Sca1+/CD117+, representing LSK cells. BM transplantation experiments using GFP-positive LSK cells derived from met-low and met-high tumor bearing mice were carried out to study lineage differentiation. The genetic signatures of LSK cells were analyzed by single cell RNA-sequencing (scRNA-seq). This analysis included unbiased automated annotation of individual cell types by correlating single-cell gene expression with reference transcriptomic data sets (SingleR algorithm) in order to evaluate the proportions of cell types in BM and reveal cell type-specific differentially expressed genes. Expression patterns of proteins originated from tumor cells were analyzed using a range of multi-omics techniques including nanostring, protein array, and mass spectrometry analysis. Tumor proteomic data was integrated with differential receptor expression patterns in BM cell types to reveal novel crosstalk between tumor cells and HSCs in the BM compartment. Mice bearing met-high tumors exhibited a significant increase in the percentage of LSK cells in the BM in comparison to tumor-free mice or mice bearing met-low tumors. These results were confirmed by functional CFU assays of peripheral blood of met-high compared to met-low tumor bearing mice. In addition, mice that underwent BM transplantation with GFP-positive LSK cells obtained from met-high inoculated donors exhibited an increased percentage of circulating GFP-positive myeloid cells in comparison to counterpart mice transplanted with LSK cells from met-low inoculated donors. Moreover, scRNA-seq analysis of LSK cells obtained from the BM of met-low and met-high tumor bearing mice revealed that met-high tumors induce the enrichment of monocyte-dendritic progenitor population (MDP), confirmed also by flow cytometry. To uncover the possible factors involved in myeloid programming of LSK cells, we performed a proteomic screen of tumor conditioned medium and integrated the results with the scRNA-seq data analysis. This analysis revealed that the IL-6-IL-6R axis is highly active in LSK-derived MDP cells from mice bearing met-high tumors. An adoptive transfer experiment using MDP-GFP+ cells obtained from BM of met-high tumor bearing mice demonstrated that met-high tumors directly dictate HSC fate decision towards myeloid bias, resulting in increased metastasis. Evidently, blocking IL-6 in mice bearing met-high tumors reduced the number of MDP cells, and consequently decreased metastasis. Our study reveals a unique crosstalk between tumor cells and HSCs. It provides new insight into the mechanism by which tumors contribute to the presence of supporting stroma. Specifically, tumors secreting IL-6 dictate a specific genetic signature in HSCs that programs them towards myeloid differentiation, thereby inducing a metastatic switch. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Wen-Qin Guo ◽  
Ying-Ge Chen ◽  
Rong-Zhen Shi ◽  
Kai He ◽  
Jian-Feng Wang ◽  
...  

Panax notoginseng (PN) has been used as a qi- and blood-activating (Huoxue) drug for thousands of years in China. It has also been widely used as an anticancer drug at present. As a Huoxue drug, the effect of PN on hematopoietic differentiation in tumor-bearing body has been paid more and more attention. Our research found that panax notoginseng saponins (PNS), especially panaxadiol saponins (PDS) and its aglucon 20(S)-Protopanaxdiol (PPD), could improve the immunosuppressive state by regulating the abnormal hematopoietic differentiation in a tumor-bearing body by multiple ways. An interesting phenomenon is that PDS reduced the neutrophil-lymphocyte ratio (NLR) via its inhibition effect on the granule-monocyte differentiation of spleen cells, which is associated with a decrease in the secretion of tumor MPO, G-CSF, PU.1, and C/EBPα. Otherwise, PDS increased the proportion of both hematopoietic stem cells and erythroid progenitor cells in the bone marrow, but inhibited spleen erythroid differentiation via inhibiting secretion of tumor EPO, GATA-1, and GATA-2. This study suggests that PNS regulated the tumor-induced abnormal granule-monocyte differentiation of hematopoietic stem cells, affecting the distribution and function of haemocytes in tumor-bearing mice.


2021 ◽  
Author(s):  
Hysenaj Lisiena ◽  
De Laval Bérengère ◽  
Arce-Gorvel Vilma ◽  
Bosilkovski Mile ◽  
Gonzalez Gabriela ◽  
...  

ABSTRACTSo far, hematopoietic stem cells (HSC) are considered the source of mature immune cells, the latter being the only ones capable of mounting an immune response. Recent evidence shows HSC can also directly sense cytokines released upon infection/inflammation and pathogen-associated molecular pattern interaction, while keeping a long-term memory of previous encountered signals. Direct sensing of danger signals by HSC induces early myeloid commitment, increases myeloid effector cell numbers and contributes to an efficient immune response. Here, using specific genetic tools on both host and pathogen sides, we show that HSC can directly sense B. abortus pathogenic bacteria within the bone marrow via the interaction of the cell surface protein CD150 with the bacterial outer membrane protein Omp25, inducing efficient functional commitment of HSC to the myeloid lineage. This is the first demonstration of a direct recognition of a live pathogen by HSC via CD150, which attests of a very early contribution of HSC to immune response.SUMMARYThis work provides first evidence HSC directly sense Brucella abortus via the bacterial outer membrane protein Omp25 and the HSC surface receptor CD150, leading to functional commitment of HSC to myeloid lineage and very early initiation of immune response.


Hepatology ◽  
2000 ◽  
Vol 31 (6) ◽  
pp. 1251-1256 ◽  
Author(s):  
Lucy Golden-Mason ◽  
Michael P. Curry ◽  
Niamh Nolan ◽  
Oscar Traynor ◽  
Gerry McEntee ◽  
...  

1983 ◽  
Vol 173 (2) ◽  
pp. 176-180 ◽  
Author(s):  
G. N. Schwartz ◽  
J. A. Biegel ◽  
B. Fisher ◽  
I. Klein

Sign in / Sign up

Export Citation Format

Share Document