Comparison of the Clinical Accuracy Between Point-to-Point Registration and Auto-Registration Using an Active Infrared Navigation System

Spine ◽  
2018 ◽  
Vol 43 (22) ◽  
pp. E1329-E1333 ◽  
Author(s):  
Jingwei Zhao ◽  
Yajun Liu ◽  
Mingxing Fan ◽  
Bo Liu ◽  
Da He ◽  
...  
2020 ◽  
Vol 49 (5) ◽  
pp. 49-57
Author(s):  
A. V. Ksendzuk ◽  
E. A. Surmin ◽  
V. V. Kachesov ◽  
S. O. Zhdanov ◽  
K. S. Shakhalov

Results of an experimental study of a local navigation system based on the processing signals from broadcast sources presented. The results of the development of processing algorithms for point-to-point coordinates estimation of the object are presented. The results of the development of algorithms for trajectories estimation are presented. In performed simulation the possibility of obtaining submeter position estimation accuracy in the proposed system is shown. Development results of the navigation module demonstrator are presented. The results of experimental work in difficult navigation conditions, in the presence of shading, reflections and other factors, are presented. It is shown that the developed navigation module allows in the open space near buildings which partially obscuring the satellite systems signals to obtain accuracy higher than the GNSS navigation equipment. In indoor environment in the absence of satellite navigation signals, the developed module shows positioning accuracy not worse than 1.5 meters and provides a measurement rate 1 Hz and better.


Author(s):  
Giuseppe Spampinato ◽  
Arcangelo Bruna ◽  
Davide Giacalone ◽  
Giuseppe Messina

2019 ◽  
pp. 152-158
Author(s):  
Emil Z. Gareev ◽  
Yuri B. Sorokin ◽  
Igor M. Antropov ◽  
Anton E. Kurako ◽  
Antonina A. Puchkovskaya ◽  
...  

We developed a navigation system based on wireless visible light data transmission channel and an algorithm for the decoding on smartphones. The work aims to create an interactive navigation system inside the Hermitage Museum for museum staff. The system was designed for using a modern smart-phone device as a receiver, a conventional LED illuminator as transmitter and a RGB diode as a navigation point in each room of the museum. We developed a modulator for data transmission, an algorithm for receiving and processing information using a stock camera of an iOS-based smart-phone, organized a point-to-point network between the LED illuminators and the server with a full back-end and front-end communication. The system allows transmitting data with rates up to 2 kbps on distance up to 1 meter.


1971 ◽  
Vol 24 (1) ◽  
pp. 105-120
Author(s):  
Karl E. Karwath

It seems appropriate first to define and explain the term Area Navigation that lately has almost become a slogan in discussions on short-range radio navigation aids. The term itself does not convey much because virtually any radio navigation system permits navigation in the area of coverage of the associated ground stations; for a systematic classification of navigation systems, the term Area Navigation (herein called ANAV) is unsatisfactory. It can be understood only in the context of air traffic control requirements. For a long while the requirements of short-range navigation systems were almost exclusively governed by the needs of air traffic control systems based on an airways concept. When during recent years A.T.C. methods became less associated with a fixed route structure, especially in the terminal area, the requirements to be met by a navigation system changed accordingly. There now appears to be a general trend for area navigation capability to become available as a substitute for a point-to-point navigation system.


2012 ◽  
Vol 249-250 ◽  
pp. 1234-1246 ◽  
Author(s):  
Krzysztof Daniec ◽  
Karol Jędrasiak ◽  
Roman Koteras ◽  
Aleksander Nawrat

This paper presents Embedded Inertial Navigation System designed and manufactured by the Department of Automatic Control and Robotics in Silesian University of Technology, Gliwice, Poland. Designed system is currently one of the smallest in the world. Within it there is implemented INS-GPS loosely coupled data fusion algorithm and point-to-point navigation algorithm. Both the algorithms and the constructed hardware were tested using two unmanned ground vehicles varying in size. Acquired results of those successful tests are presented.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 522
Author(s):  
Henrik Frisk ◽  
Eliza Lindqvist ◽  
Oscar Persson ◽  
Juliane Weinzierl ◽  
Linda K. Bruetzel ◽  
...  

Background: To investigate the accuracy of augmented reality (AR) navigation using the Magic Leap head mounted device (HMD), pedicle screws were minimally invasively placed in four spine phantoms. Methods: AR navigation provided by a combination of a conventional navigation system integrated with the Magic Leap head mounted device (AR-HMD) was used. Forty-eight screws were planned and inserted into Th11-L4 of the phantoms using the AR-HMD and navigated instruments. Postprocedural CT scans were used to grade the technical (deviation from the plan) and clinical (Gertzbein grade) accuracy of the screws. The time for each screw placement was recorded. Results: The mean deviation between navigation plan and screw position was 1.9 ± 0.7 mm (1.9 [0.3–4.1] mm) at the entry point and 1.4 ± 0.8 mm (1.2 [0.1–3.9] mm) at the screw tip. The angular deviation was 3.0 ± 1.4° (2.7 [0.4–6.2]°) and the mean time for screw placement was 130 ± 55 s (108 [58–437] s). The clinical accuracy was 94% according to the Gertzbein grading scale. Conclusion: The combination of an AR-HMD with a conventional navigation system for accurate minimally invasive screw placement is feasible and can exploit the benefits of AR in the perspective of the surgeon with the reliability of a conventional navigation system.


Author(s):  
D. Cherns

The use of high resolution electron microscopy (HREM) to determine the atomic structure of grain boundaries and interfaces is a topic of great current interest. Grain boundary structure has been considered for many years as central to an understanding of the mechanical and transport properties of materials. Some more recent attention has focussed on the atomic structures of metalsemiconductor interfaces which are believed to control electrical properties of contacts. The atomic structures of interfaces in semiconductor or metal multilayers is an area of growing interest for understanding the unusual electrical or mechanical properties which these new materials possess. However, although the point-to-point resolutions of currently available HREMs, ∼2-3Å, appear sufficient to solve many of these problems, few atomic models of grain boundaries and interfaces have been derived. Moreover, with a new generation of 300-400kV instruments promising resolutions in the 1.6-2.0 Å range, and resolutions better than 1.5Å expected from specialist instruments, it is an appropriate time to consider the usefulness of HREM for interface studies.


Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


Author(s):  
J.L. Batstone ◽  
J.M. Gibson ◽  
Alice.E. White ◽  
K.T. Short

High resolution electron microscopy (HREM) is a powerful tool for the determination of interface atomic structure. With the previous generation of HREM's of point-to-point resolution (rpp) >2.5Å, imaging of semiconductors in only <110> directions was possible. Useful imaging of other important zone axes became available with the advent of high voltage, high resolution microscopes with rpp <1.8Å, leading to a study of the NiSi2 interface. More recently, it was shown that images in <100>, <111> and <112> directions are easily obtainable from Si in the new medium voltage electron microscopes. We report here the examination of the important Si/Si02 interface with the use of a JEOL 4000EX HREM with rpp <1.8Å, in a <100> orientation. This represents a true structural image of this interface.


Sign in / Sign up

Export Citation Format

Share Document