scholarly journals Hfe Is Highly Expressed in Liver Sinusoidal Endothelial Cells But Is Not Needed to Maintain Systemic Iron Homeostasis In Vivo

HemaSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. e667
Author(s):  
Silvia Colucci ◽  
Katja Müdder ◽  
Martina U. Muckenthaler ◽  
Sandro Altamura
2022 ◽  
Vol 12 ◽  
Author(s):  
Bethany H. James ◽  
Pantelitsa Papakyriacou ◽  
Matthew J. Gardener ◽  
Louise Gliddon ◽  
Christopher J. Weston ◽  
...  

Many chronic inflammatory diseases are treated by administration of “biological” therapies in terms of fully human and humanized monoclonal antibodies or Fc fusion proteins. These tools have widespread efficacy and are favored because they generally exhibit high specificity for target with a low toxicity. However, the design of clinically applicable humanized antibodies is complicated by the need to circumvent normal antibody clearance mechanisms to maintain therapeutic dosing, whilst avoiding development of off target antibody dependent cellular toxicity. Classically, professional phagocytic immune cells are responsible for scavenging and clearance of antibody via interactions with the Fc portion. Immune cells such as macrophages, monocytes, and neutrophils express Fc receptor subsets, such as the FcγR that can then clear immune complexes. Another, the neonatal Fc receptor (FcRn) is key to clearance of IgG in vivo and serum half-life of antibody is explicitly linked to function of this receptor. The liver is a site of significant expression of FcRn and indeed several hepatic cell populations including Kupffer cells and liver sinusoidal endothelial cells (LSEC), play key roles in antibody clearance. This combined with the fact that the liver is a highly perfused organ with a relatively permissive microcirculation means that hepatic binding of antibody has a significant effect on pharmacokinetics of clearance. Liver disease can alter systemic distribution or pharmacokinetics of antibody-based therapies and impact on clinical effectiveness, however, few studies document the changes in key membrane receptors involved in antibody clearance across the spectrum of liver disease. Similarly, the individual contribution of LSEC scavenger receptors to antibody clearance in a healthy or chronically diseased organ is not well characterized. This is an important omission since pharmacokinetic studies of antibody distribution are often based on studies in healthy individuals and thus may not reflect the picture in an aging or chronically diseased population. Therefore, in this review we consider the expression and function of key antibody-binding receptors on LSEC, and the features of therapeutic antibodies which may accentuate clearance by the liver. We then discuss the implications of this for the design and utility of monoclonal antibody-based therapies.


Blood ◽  
2016 ◽  
Vol 128 (6) ◽  
pp. 862-865 ◽  
Author(s):  
David Stegner ◽  
Michael Popp ◽  
Viola Lorenz ◽  
Jacqueline K. Wax ◽  
J. Engelbert Gessner ◽  
...  

Key Points Antibody-induced shedding of platelet GPVI in vivo and the associated transient thrombocytopenia depend on liver sinusoidal endothelial cell-expressed FcγRIIB.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 432-432
Author(s):  
Silvia Colucci ◽  
Sandro Altamura ◽  
Matthias Hentze ◽  
Martina U. Muckenthaler

The liver stores iron and senses systemic and tissue iron availability. Hepatocytes control iron homeostasis by producing the peptide hormone hepcidin that controls dietary iron absorption and iron release from intracellular stores. Recent data challenged the exclusive role of hepatocytes in controlling iron levels. Indeed, liver sinusoidal endothelial cells (LSECs) increase BMP2 and BMP6 levels in response to iron, which control hepcidin expression in a paracrine manner. However the molecular mechanism(s) of how BMPs respond to iron levels remain unknown. We established primary murine LSEC cultures and exposed these to iron sources. Unexpectedly, BMP2 mRNA expression is strongly reduced by iron treatment, while BMP6 levels are only mildly increased. This finding suggests that intracellular iron content cannot directly activate BMP2 transcription and only slightly contribute to BMP6 upregulation in LSEC cultures. However, if LSECs are co-cultured with iron-loaded primary hepatocytes the expression of BMP2 and BMP6 is increased and the fold induction of BMP6 is greater compared to LSECs cultured alone, suggesting that the iron status of hepatocytes instructs the LSEC BMP response. These data are supported by findings in a genetic mouse model of iron overload (Slc40a1C326S/C326S). Hepatocytes isolated from Slc40a1C326S/C326S mice display an iron-loaded molecular signature and the expected low mRNA expression of Transferrin Receptor 1 (Tfr1). By contrast, LSECs show high expression of Tfr1, indicating intracellular iron deficiency. Despite this, hepatic BMP levels are increased, suggesting that BMP2 and BMP6 expression are directly related to the intracellular iron content of hepatocytes but not LSECs. RNA-sequencing of isolated hepatic cell populations is ongoing to identify putative hepatocyte regulators involved in the iron-mediated BMP2 and BMP6 regulation. Disclosures Muckenthaler: Silence Therapeutics: Consultancy; Novartis: Research Funding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Morisada Hayakawa ◽  
Asuka Sakata ◽  
Hiroko Hayakawa ◽  
Hikari Matsumoto ◽  
Takafumi Hiramoto ◽  
...  

AbstractCoagulation factors are produced from hepatocytes, whereas production of coagulation factor VIII (FVIII) from primary tissues and cell species is still controversial. Here, we tried to characterize primary FVIII-producing organ and cell species using genetically engineered mice, in which enhanced green fluorescent protein (EGFP) was expressed instead of the F8 gene. EGFP-positive FVIII-producing cells existed only in thin sinusoidal layer of the liver and characterized as CD31high, CD146high, and lymphatic vascular endothelial hyaluronan receptor 1 (Lyve1)+. EGFP-positive cells can be clearly distinguished from lymphatic endothelial cells in the expression profile of the podoplanin− and C-type lectin-like receptor-2 (CLEC-2)+. In embryogenesis, EGFP-positive cells began to emerge at E14.5 and subsequently increased according to liver maturation. Furthermore, plasma FVIII could be abolished by crossing F8 conditional deficient mice with Lyve1-Cre mice. In conclusion, in mice, FVIII is only produced from endothelial cells exhibiting CD31high, CD146high, Lyve1+, CLEC-2+, and podoplanin− in liver sinusoidal endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document