scholarly journals Gut Microbiome: The Third Musketeer in the Cancer-Immune System Cross-Talk

2020 ◽  
Vol 3 (4) ◽  
pp. 181-187
Author(s):  
Prateek Sharma ◽  
Tejeshwar Jain ◽  
Vrishketan Sethi ◽  
Srikanth Iyer ◽  
Vikas Dudeja
2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain's pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain's disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain’s pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain’s disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2021 ◽  
Vol 73 (2) ◽  
Author(s):  
Laura CARUCCI ◽  
Serena COPPOLA ◽  
Anna LUZZETTI ◽  
Veronica GIGLIO ◽  
Jon VANDERHOOF ◽  
...  

2018 ◽  
Vol 215 (11) ◽  
pp. 2702-2704 ◽  
Author(s):  
Aleksandra Deczkowska ◽  
Michal Schwartz

Immune cells patrol the brain and can support its function, but can we modulate brain–immune communication to fight neurological diseases? Here, we briefly discuss the mechanisms orchestrating the cross-talk between the brain and the immune system and describe how targeting this interaction in a well-controlled manner could be developed as a universal therapeutic approach to treat neurodegeneration.


2007 ◽  
Vol 204 (8) ◽  
pp. 1911-1922 ◽  
Author(s):  
Hsin-Jung Wu ◽  
Heloisa Sawaya ◽  
Bryce Binstadt ◽  
Margot Brickelmaier ◽  
Amanda Blasius ◽  
...  

Unmethylated CpG-oligodeoxynucleotides (ODNs) are generally thought of as potent adjuvants with considerable therapeutic potential to enhance immune responses against microbes and tumors. Surprisingly, certain so-called stimulatory CpG-ODNs strongly inhibited the effector phase of inflammatory arthritis in the K/BxN serum transfer system, either preventively or therapeutically. Also unexpected was that the inhibitory influence did not depend on the adaptive immune system cells mobilized in an immunostimulatory context. Instead, they relied on cells of the innate immune system, specifically on cross talk between CD8α+ dendritic cells and natural killer cells, resulting in suppression of neutrophil recruitment to the joint, orchestrated through interleukin-12 and interferon-γ. These findings highlight potential applications of CpG-ODNs and downstream molecules as antiinflammatory agents.


Epilepsia ◽  
2020 ◽  
Vol 61 (12) ◽  
pp. 2619-2628
Author(s):  
Manisha Holmes ◽  
Zia Flaminio ◽  
Mridula Vardhan ◽  
Fangxi Xu ◽  
Xin Li ◽  
...  

2020 ◽  
Vol 13 (10) ◽  
pp. 277 ◽  
Author(s):  
Anastasiia I. Petushkova ◽  
Andrey A. Zamyatnin

Papain-like proteases (PLpro) of coronaviruses (CoVs) support viral reproduction and suppress the immune response of the host, which makes CoV PLpro perspective pharmaceutical targets. Their inhibition could both prevent viral replication and boost the immune system of the host, leading to the speedy recovery of the patient. Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third CoV outbreak in the last 20 years. Frequent mutations of the viral genome likely lead to the emergence of more CoVs. Inhibitors for CoV PLpro can be broad-spectrum and can diminish present and prevent future CoV outbreaks as PLpro from different CoVs have conservative structures. Several inhibitors have been developed to withstand SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). This review summarizes the structural features of CoV PLpro, the inhibitors that have been identified over the last 20 years, and the compounds that have the potential to become novel effective therapeutics against CoVs in the near future.


Sign in / Sign up

Export Citation Format

Share Document