The role of probiotics and postbiotics in modulating the gut microbiome-immune system axis in the pediatric age

2021 ◽  
Vol 73 (2) ◽  
Author(s):  
Laura CARUCCI ◽  
Serena COPPOLA ◽  
Anna LUZZETTI ◽  
Veronica GIGLIO ◽  
Jon VANDERHOOF ◽  
...  
Author(s):  
William D Miller ◽  
Robert Keskey ◽  
John C Alverdy

Abstract Although sepsis has been characterized as a dysregulated immune response to an ongoing or suspected infection, the role of the microbiome as a key influencer of the septic response is emerging. The unavoidable disruption of the microbiome while treating sepsis with antibiotics can itself result in immune system dysregulation, further exacerbating the course and outcome of sepsis. Alterations in the gut microbiome as a result of sepsis and its treatment have been implicated in the organ dysfunction typical of sepsis across a wide variety of tissues including the lung, kidney and brain. A number of microbiota directed interventions are currently under investigation in the setting of sepsis including fecal transplant, the administration of dietary fiber in enteral feeding products and the use of antibiotic scavengers that are directed at attenuating the effects of antibiotics on the gut microbiota while allowing them to concentrate at the primary sites of infection. Taken together, the emerging role of the gut microbiome in sepsis touches various elements of the pathophysiology of sepsis and its treatment, and provides yet another reason to consider the judicious use of antibiotics via antibiotic stewardship programs.


2020 ◽  
Vol 8 (11) ◽  
pp. 1727
Author(s):  
Jacqueline So ◽  
Lai-Shan Tam

Emerging evidence suggests there is a gut-joint axis in spondyloarthritis (SpA). In a study, subclinical gut inflammation occurred in nearly 50% of SpA. Chronic gut inflammation also correlated with disease activity in SpA. Trillions of microorganisms reside in the human gut and interact with the human immune system. Dysbiosis affects gut immune homeostasis and triggers different autoimmune diseases including SpA. The absence of arthritis in HLA-B27 germ-free mice and the development of arthritis after the introduction of commensal bacteria to HLA-B27 germ-free mice proved to be the important role of gut bacteria in shaping SpA, other than the genetic factor. The recent advance in gene sequencing technology promotes the identification of microorganisms. In this review, we highlighted current evidence supporting the link between gut and axial SpA (axSpA). We also summarized available findings of gut microbiota and its interaction with the immune system in axSpA. Future research may explore the way to modulate gut microorganisms in axSpA and bring gut microbiome discoveries towards application.


1995 ◽  
Vol 16 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Bryan L. Spangelo ◽  
William C. Gorospe
Keyword(s):  

Immuno ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 583-594
Author(s):  
Takehiro Hirano ◽  
Hiroshi Nakase

The gut microbiota has diverse microbial components, including bacteria, viruses, and fungi. The interaction between gut microbiome components and immune responses has been studied extensively over the last decade. Several studies have reported the potential role of the gut microbiome in maintaining gut homeostasis and the development of disease. The commensal microbiome can preserve the integrity of the mucosal barrier by acting on the host immune system. Contrastingly, dysbiosis-induced inflammation can lead to the initiation and progression of several diseases through inflammatory processes and oxidative stress. In this review, we describe the multifaceted effects of the gut microbiota on several diseases from the perspective of mucosal immunological responses.


2021 ◽  
Vol 22 (14) ◽  
pp. 7671
Author(s):  
Nayla Munawar ◽  
Khansa Ahsan ◽  
Khalid Muhammad ◽  
Aftab Ahmad ◽  
Munir A. Anwar ◽  
...  

Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 500
Author(s):  
Michael J. Butler ◽  
Alexis A. Perrini ◽  
Lisa A. Eckel

There is a growing recognition that both the gut microbiome and the immune system are involved in a number of psychiatric illnesses, including eating disorders. This should come as no surprise, given the important roles of diet composition, eating patterns, and daily caloric intake in modulating both biological systems. Here, we review the evidence that alterations in the gut microbiome and immune system may serve not only to maintain and exacerbate dysregulated eating behavior, characterized by caloric restriction in anorexia nervosa and binge eating in bulimia nervosa and binge eating disorder, but may also serve as biomarkers of increased risk for developing an eating disorder. We focus on studies examining gut dysbiosis, peripheral inflammation, and neuroinflammation in each of these eating disorders, and explore the available data from preclinical rodent models of anorexia and binge-like eating that may be useful in providing a better understanding of the biological mechanisms underlying eating disorders. Such knowledge is critical to developing novel, highly effective treatments for these often intractable and unremitting eating disorders.


2018 ◽  
Vol 92 ◽  
pp. 12-34 ◽  
Author(s):  
Lisa Rizzetto ◽  
Francesca Fava ◽  
Kieran M. Tuohy ◽  
Carlo Selmi

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 69 ◽  
Author(s):  
Alessio Fasano

Improved hygiene leading to reduced exposure to microorganisms has been implicated as one possible cause for the recent “epidemic” of chronic inflammatory diseases (CIDs) in industrialized countries. That is the essence of the hygiene hypothesis that argues that rising incidence of CIDs may be, at least in part, the result of lifestyle and environmental changes that have made us too “clean” for our own good, so causing changes in our microbiota. Apart from genetic makeup and exposure to environmental triggers, inappropriate increase in intestinal permeability (which may be influenced by the composition of the gut microbiota), a “hyper-belligerent” immune system responsible for the tolerance–immune response balance, and the composition of gut microbiome and its epigenetic influence on the host genomic expression have been identified as three additional elements in causing CIDs. During the past decade, a growing number of publications have focused on human genetics, the gut microbiome, and proteomics, suggesting that loss of mucosal barrier function, particularly in the gastrointestinal tract, may substantially affect antigen trafficking, ultimately influencing the close bidirectional interaction between gut microbiome and our immune system. This cross-talk is highly influential in shaping the host gut immune system function and ultimately shifting genetic predisposition to clinical outcome. This observation led to a re-visitation of the possible causes of CIDs epidemics, suggesting a key pathogenic role of gut permeability. Pre-clinical and clinical studies have shown that the zonulin family, a group of proteins modulating gut permeability, is implicated in a variety of CIDs, including autoimmune, infective, metabolic, and tumoral diseases. These data offer novel therapeutic targets for a variety of CIDs in which the zonulin pathway is implicated in their pathogenesis.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Catherine Lozupone ◽  
Preston Neff ◽  
Matthew Rhodes ◽  
Jody Donnelly ◽  
Thomas Campbell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document