scholarly journals Targeting neuro–immune communication in neurodegeneration: Challenges and opportunities

2018 ◽  
Vol 215 (11) ◽  
pp. 2702-2704 ◽  
Author(s):  
Aleksandra Deczkowska ◽  
Michal Schwartz

Immune cells patrol the brain and can support its function, but can we modulate brain–immune communication to fight neurological diseases? Here, we briefly discuss the mechanisms orchestrating the cross-talk between the brain and the immune system and describe how targeting this interaction in a well-controlled manner could be developed as a universal therapeutic approach to treat neurodegeneration.

2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain's pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain's disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain’s pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain’s disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2011 ◽  
Vol 30 (2-3) ◽  
pp. 71-86 ◽  
Author(s):  
Maurizio Chiriva-Internati ◽  
Leonardo Mirandola ◽  
W. Martin Kast ◽  
Marjorie R. Jenkins ◽  
Everardo Cobos ◽  
...  

2014 ◽  
Vol 11 (4) ◽  
pp. 337-346 ◽  
Author(s):  
Fabrizio Mattei ◽  
Giovanna Schiavoni ◽  
Adele De Ninno ◽  
Valeria Lucarini ◽  
Paola Sestili ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Jenny Lutshumba ◽  
Barbara S. Nikolajczyk ◽  
Adam D. Bachstetter

Neuroinflammation and the tissue-resident innate immune cells, the microglia, respond and contribute to neurodegenerative pathology. Although microglia have been the focus of work linking neuroinflammation and associated dementias like Alzheimer’s Disease, the inflammatory milieu of brain is a conglomerate of cross-talk amongst microglia, systemic immune cells and soluble mediators like cytokines. Age-related changes in the inflammatory profile at the levels of both the brain and periphery are largely orchestrated by immune system cells. Strong evidence indicates that both innate and adaptive immune cells, the latter including T cells and B cells, contribute to chronic neuroinflammation and thus dementia. Neurodegenerative hallmarks coupled with more traditional immune system stimuli like infection or injury likely combine to trigger and maintain persistent microglial and thus brain inflammation. This review summarizes age-related changes in immune cell function, with special emphasis on lymphocytes as a source of inflammation, and discusses how such changes may potentiate both systemic and central nervous system inflammation to culminate in dementia. We recap the understudied area of AD-associated changes in systemic lymphocytes in greater detail to provide a unifying perspective of inflammation-fueled dementia, with an eye toward evidence of two-way communication between the brain parenchyma and blood immune cells. We focused our review on human subjects studies, adding key data from animal models as relevant.


2021 ◽  
Vol 19 ◽  
Author(s):  
Gaigai Li ◽  
Prativa Sherchan ◽  
Zhouping Tang ◽  
Jiping Tang

: Autophagy and phagocytosis are two important endogenous lysosomal dependent clearing systems in the organism. In some neurological disorders, excessive autophagy or dysfunctional phagocytosis have been shown to contribute to brain injury. Recent studies have revealed that there are underlying interactions between these two processes. However, different studies show inconsistent results for the contribution of autophagy to the phagocytic process in diverse phagocytes and relatively little is known about the link between them especially in the brain. It is critical to understand the role that autophagy plays in phagocytic process in order to promote clearance of endogenous and exogenous detrimental materials. In this review, we highlight studies that focused on phagocytosis and autophagy occurring in the brain and summarized the possible regulatory roles of autophagy in the process of phagocytosis. Balancing the roles of autophagy and phagocytosis may be a promising therapeutic strategy for the treatment of some neurological diseases in the future.


2020 ◽  
Vol 7 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Eloisa Salvo-Romero ◽  
Patricia Stokes ◽  
Mélanie G. Gareau

The vast diversity of bacteria that inhabit the gastrointestinal tract strongly influence host physiology, not only nutrient metabolism but also immune system development and function. The complexity of the microbiota is matched by the complexity of the host immune system, where they have coevolved to maintain homeostasis ensuring the mutualistic host-microbial relationship. Numerous studies in recent years investigating the gut-brain axis have demonstrated an important role for the gut microbiota in modulating brain development and function, with the immune system serving as an important coordinator of these interactions. Gut bacteria can modulate not only gut-resident immune cells but also brain-resident immune cells. Activation of the immune system in the gut and in the brain are implicated in responses to neuroinflammation, brain injury, as well as changes in neurogenesis and plasticity. Impairments in this bidirectional communication are implicated in the etiopathogenesis of psychiatric and neurodevelopmental diseases and disorders, including autism spectrum disorders, or comorbidities associated with Gastrointestinal diseases, including inflammatory bowel diseases, where dysbiosis is commonly seen. Consequently, probiotics, or beneficial microbes, are being recognized as promising therapeutic targets to modulate behavior and brain development by modulating the gut microbiota. Here we review the role of microbiota-immune interactions in the gut and the brain during homeostasis and disease and their impact on gut-brain communication, brain function, and behavior as well as the use of probiotics in central nervous system alterations. Statement of novelty: The microbiota-gut-brain axis is increasingly recognized as an important physiological pathway for maintaining health and impacting the brain and central nervous system. Increasing evidence suggests that the immune system is crucial for gut-brain signaling. In this review, we highlight the critical studies in the literature that identify the key immune pathways involved.


1994 ◽  
Vol 1 ◽  
pp. 384
Author(s):  
A. Uehara ◽  
K. Kubo ◽  
T. Kubota ◽  
T. Nozu ◽  
M. Moriya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document