scholarly journals The enhanced bioavailability of free curcumin and bioactive-metabolite tetrahydrocurcumin from a dispersible, oleoresin-based turmeric formulation

Medicine ◽  
2021 ◽  
Vol 100 (27) ◽  
pp. e26601
Author(s):  
Sanjib Kumar Panda ◽  
Somashekara Nirvanashetty ◽  
M. Missamma ◽  
Shavon Jackson-Michel
Keyword(s):  
Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 533 ◽  
Author(s):  
Jiao-jiao Ji ◽  
Qi Feng ◽  
Hai-feng Sun ◽  
Xue-jun Zhang ◽  
Xiao-xiao Li ◽  
...  

Bioactive metabolites in Codonopsis pilosula are of particular interest as an immunostimulant. Methyl jasmonate (MeJA) plays an important role in the elicitation of metabolite biosynthesis. Here, we explored the response of metabolites to MeJA elicitation in C. pilosula adventitious roots and multiple shoots. The results showed that the biomass, polysaccharide, and lobetyolin content of adventitious roots exhibited the highest increases with 100 µmol·L−1 MeJA at the 16th day of subculture, whereas the atractylenolide III (a terpenoid) content increased extremely with 50 µmol·L−1 MeJA treatment at the 7th day of subculture. In addition, the biomass and lobetyolin content significantly increased at the 4th day after treatment. Similarly, the polysaccharide and lobetyolin content increased in multiple shoots. Further identification of different metabolites responding to MeJA by 1H-NMR showed an extremely significant increase of the lobetyolinin level, which coincided with lobetyolin. Accordingly, the precursor, fatty acids, showed a highly significant decrease in their levels. Furthermore, a significant increase in β-d-fructose-butanol glycoside was detected, which was accompanied by a decrease in the sucrose level. Accordingly, the enzyme genes responsible for terpenoid and carbohydrate biosynthesis, CpUGPase, and CpPMK, were up regulated. In conclusion, MeJA promoted culture growth and accelerated bioactive metabolite accumulation by regulating the expression of the metabolite biosynthesis related genes, CpUGPase and CpPMK in C. pilosula.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3092
Author(s):  
Rasha El-Shafei ◽  
Hala Hegazy ◽  
Bishnu Acharya

Non-conventional extraction of bioactive metabolites could provide sustainable alternative techniques to preserve the potency of antioxidants and antiviral compounds extracted from macro-algae. In this paper, we first reviewed the antioxidant and antiviral potential of the active metabolites that exist in the three known macro-algae classes; Phaeophyceae, Rhodophyceae, and Chlorophyceae, and a comparison between their activities is discussed. Secondly, a review of conventional and non-conventional extraction methods is undertaken. The review then focused on identifying the optimal extraction method of sulphated polysaccharide from macro-algae that exhibits both antiviral and antioxidant activity. The review finds that species belonging to the Phaeophyceae and Rhodophceae classes are primarily potent against herpes simplex virus, followed by human immunodeficiency virus and influenza virus. At the same time, species belonging to Chlorophyceae class are recorded by most of the scholars to have antiviral activity against herpes simplex virus 1. Additionally, all three macro-algae classes exhibit antioxidant activity, the potency of which is a factor of the molecular structure of the bioactive metabolite as well as the extraction method applied.


2004 ◽  
Vol 21 (1) ◽  
pp. 122 ◽  
Author(s):  
Mark Hildebrand ◽  
Laura E. Waggoner ◽  
Grace E. Lim ◽  
Katherine H. Sharp ◽  
Christian P. Ridley ◽  
...  

2021 ◽  
Vol 21 (17) ◽  
pp. 1517-1518
Author(s):  
Dharmendra Kumar Yadav

The discovery and utilization of novel metabolites from natural sources are gaining momentum in the present era. The drug discovery programs have witnessed a remarkable shift from conventional medicines to exploiting natural products and their “value addition”, for treating lifethreatening diseases. The global outbreak of life-threatening diseases namely Ebola, SARS,including infections of the bloodstream (bacteremia), heart valves (endocarditis), lungs (pneumonia), and brain (meningitis) and AIDS calls for a more targeted approach to effectively combat the emerging diseases. In the present scenario, natural products and their extracts are being explored extensively for the treatment of various life threatening diseases. In this thematic issue, several review articles contributed by the scientist and researchers in the different areas of medicinal chemistry, synthetic chemistry, new emerging multi-drug targets were collected. This issue begins with a review article on the “Chemistry and Pharmacology of Natural Catechins from Camellia sinensis as anti-MRSA agents” by Gaur et al. and focuses on the spread of MRSA strains is of great concern because of limited treatment options for staphylococcal infections, since these strains are resistant to the entire class of β-lactam antibiotics. In addition, MRSA exhibits resistance to other classes of antimicrobial agents such as fluoroquinolones, cephalosporins, aminoglycosides, macrolide and even glycopeptides (vancomycin and teicoplanine), leading to the emergence of resistant strains such as glycopeptide intermediate (GISA) and resistant strain (GRSA) of S. aureus. In this review, chemical constituents responsible for the anti-MRSA activity of tea are explored [1]. The next article of this issue is a review article on the “Recent Advancements in the Synthesis and Chemistry of Benzofused Nitrogen- and Oxygen-based Bioactive Heterocycles” by Sharma et al. which focuses on medicinal importance of these bioactive benzo-fused heterocycles; special attention has been given to their synthesis as well as medicinal/pharmaceutical properties in detail [2]. “Trends in pharmaceutical design of Endophytes as anti-infective,” by Tiwari et al., is the third article in this issue. The review focused on the meta-analysis of bioactive metabolite production from endophytes, extensively discussing the bioprospection of natural products for pharmaceutical applications. In light of the emerging importance of endophytes as antiinfective agents, an exploration of the pharmaceutical design of novel chemical entities and analogues has enabled efficient and cost-effective drug discovery programs. However, bottlenecks in endophytic biology and research requires a better understanding of endophytic dynamics and mechanism of bioactive metabolite production towards a sustainable drug discovery program [3]. The last article of this issue is also research article on “Recent development of tetrahydro-quinoline/isoquinoline based compounds as anticancer agents” by Yadav et al. The article reported the synthesis of potent tetrahydroquinoline/isoquinoline molecules of the last 10 years with their anticancer properties in various cancer cell lines and stated their half-maximal inhibitory concentration (IC50). In addition, we also considered the discussion of molecular docking and structural activity relationship wherever provided to understand the possible mode of activity an target involved and structural features responsible for the better activity, so the reader can directly find detail for designing new anticancer agents. [4]. Finally I would like to thank all authors who contributed to this issue, titled “Recent advances on small molecule medicinal chemistry to treat human diseases”.


Bionatura ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 2187-2192
Author(s):  
Rashid Rahim Hateet ◽  
Zainab Alag Hassan ◽  
Abdulameer Abdullah Al-Mussawi ◽  
Shaima Rabeea Banoon

The present study aimed to optimize cultural conditions for optimum bioactive metabolite production by endophytic fungus Trichoderma harzianum, isolated by surface sterilization method from the leaf of the eucalyptus plant. The fungus was identified based on morphological characterization. Fungal metabolites were carried out by ethyl acetate solvent. The antibacterial activity was tested against Escherichia coli (ATCC 25922) and Staphylococcus aureus (NCTC 6571). Various carbon, nitrogen sources, pH, temperature, incubation period, and NaCl on the antibacterial metabolite production were studied. Bioactive metabolite production of T. harzianum exhibits a broad spectrum of in vitro antibacterial activity against two strains of bacteria. For the optimum production of bioactive metabolites, Dextrose and Glucose were found to be the best sources of carbon and the best sources of Nitrogen Yeast extract (YE) and (NH4)2SO. The maximum production of bioactive metabolites occurs at pH 7 and 25°C.; the NaCl showed a positive influence on bioactive metabolites.


1998 ◽  
Vol 39 (42) ◽  
pp. 7633-7636 ◽  
Author(s):  
Hyuncheol Oh ◽  
Dale C. Swenson ◽  
James B. Gloer ◽  
Donald T. Wicklow ◽  
Patrick F. Dowd
Keyword(s):  

2009 ◽  
Vol 4 (2) ◽  
pp. 137-138 ◽  
Author(s):  
M. Manzano ◽  
M.D. Giron ◽  
R. Salto ◽  
N. Sevillano ◽  
R. Rueda ◽  
...  

2019 ◽  
pp. 109-134
Author(s):  
Camila Fernanda de Oliveira Junkes ◽  
Franciele Antonia Neis ◽  
Fernanda de Costa ◽  
Anna Carolina Alves Yendo ◽  
Arthur Germano Fett-Neto

Sign in / Sign up

Export Citation Format

Share Document