scholarly journals DNA double-strand break repair: a theoretical framework and its application

2016 ◽  
Vol 13 (114) ◽  
pp. 20150679 ◽  
Author(s):  
Philip J. Murray ◽  
Bart Cornelissen ◽  
Katherine A. Vallis ◽  
S. Jon Chapman

DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γ H2AX. Many copies of γ H2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti- γ H2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo . Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, 111 In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti- γ H2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti- γ H2AX-TAT and γ H2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti- γ H2AX antibody is labelled with Auger electron-emitting 111 In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti- γ H2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti- γ H2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage accumulation in the presence of Auger electron-emitting 111 In that is supported qualitatively by the available experimental data.

2009 ◽  
Vol 187 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Troy E. Messick ◽  
Roger A. Greenberg

The intimate relationship between DNA double-strand break (DSB) repair and cancer susceptibility has sparked profound interest in how transactions on DNA and chromatin surrounding DNA damage influence genome integrity. Recent evidence implicates a substantial commitment of the cellular DNA damage response machinery to the synthesis, recognition, and hydrolysis of ubiquitin chains at DNA damage sites. In this review, we propose that, in order to accommodate parallel processes involved in DSB repair and checkpoint signaling, DSB-associated ubiquitin structures must be nonuniform, using different linkages for distinct functional outputs. We highlight recent advances in the study of nondegradative ubiquitin signaling at DSBs, and discuss how recognition of different ubiquitin structures may influence DNA damage responses.


2022 ◽  
Author(s):  
Tej Pandita ◽  
Vijay Kumari Charaka ◽  
Sharmistha Chakraborty ◽  
Chi-Lin Tsai ◽  
Xiaoyan Wang ◽  
...  

Efficient DNA double strand break (DSB) repair by homologous recombination (HR), as orchestrated by histone and non-histone proteins, is critical to genome stability, replication, transcription, and cancer avoidance. Here we report that Heterochromatin Protein1 beta (HP1β) acts as a key component of the HR DNA resection step by regulating BRCA1 enrichment at DNA damage sites, a function largely dependent on the HP1β chromo shadow domain (CSD). HP1β itself is enriched at DSBs within gene-rich regions through a CSD interaction with Chromatin Assembly Factor 1 (CAF1) and HP1β depletion impairs subsequent BRCA1 enrichment. An added interaction of the HP1β CSD with the Polycomb Repressor Complex 1 ubiquitinase component RING1A facilitates BRCA1 recruitment by increasing H2A lysine 118-119 ubiquitination, a marker for BRCA1 recruitment. Our findings reveal that HP1β interactions, mediated through its CSD with RING1A, promote H2A ubiquitination and facilitate BRCA1 recruitment at DNA damage sites, a critical step in DSB repair by the HR pathway. These collective results unveil how HP1β is recruited to DSBs in gene-rich regions and how HP1β subsequently promotes BRCA1 recruitment to further HR DNA damage repair by stimulating CtIP-dependent resection.


2020 ◽  
Vol 48 (17) ◽  
pp. e100-e100 ◽  
Author(s):  
Jasper Che-Yung Chien ◽  
Elie Tabet ◽  
Kelsey Pinkham ◽  
Cintia Carla da Hora ◽  
Jason Cheng-Yu Chang ◽  
...  

Abstract Tracking DNA double strand break (DSB) repair is paramount for the understanding and therapeutic development of various diseases including cancers. Herein, we describe a multiplexed bioluminescent repair reporter (BLRR) for non-invasive monitoring of DSB repair pathways in living cells and animals. The BLRR approach employs secreted Gaussia and Vargula luciferases to simultaneously detect homology-directed repair (HDR) and non-homologous end joining (NHEJ), respectively. BLRR data are consistent with next-generation sequencing results for reporting HDR (R2 = 0.9722) and NHEJ (R2 = 0.919) events. Moreover, BLRR analysis allows longitudinal tracking of HDR and NHEJ activities in cells, and enables detection of DSB repairs in xenografted tumours in vivo. Using the BLRR system, we observed a significant difference in the efficiency of CRISPR/Cas9-mediated editing with guide RNAs only 1–10 bp apart. Moreover, BLRR analysis detected altered dynamics for DSB repair induced by small-molecule modulators. Finally, we discovered HDR-suppressing functions of anticancer cardiac glycosides in human glioblastomas and glioma cancer stem-like cells via inhibition of DNA repair protein RAD51 homolog 1 (RAD51). The BLRR method provides a highly sensitive platform to simultaneously and longitudinally track HDR and NHEJ dynamics that is sufficiently versatile for elucidating the physiology and therapeutic development of DSB repair.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Songli Zhu ◽  
Mohammadjavad Paydar ◽  
Feifei Wang ◽  
Yanqiu Li ◽  
Ling Wang ◽  
...  

DNA double strand breaks (DSBs) have detrimental effects on cell survival and genomic stability, and are related to cancer and other human diseases. In this study, we identified microtubule-depolymerizing kinesin Kif2C as a protein associated with DSB-mimicking DNA templates and known DSB repair proteins in Xenopus egg extracts and mammalian cells. The recruitment of Kif2C to DNA damage sites was dependent on both PARP and ATM activities. Kif2C knockdown or knockout led to accumulation of endogenous DNA damage, DNA damage hypersensitivity, and reduced DSB repair via both NHEJ and HR. Interestingly, Kif2C depletion, or inhibition of its microtubule depolymerase activity, reduced the mobility of DSBs, impaired the formation of DNA damage foci, and decreased the occurrence of foci fusion and resolution. Taken together, our study established Kif2C as a new player of the DNA damage response, and presented a new mechanism that governs DSB dynamics and repair.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Fei Xu ◽  
Yixuan Fang ◽  
Lili Yan ◽  
Lan Xu ◽  
Suping Zhang ◽  
...  

Abstract Beclin 1 is a well-established core mammalian autophagy protein that is embryonically indispensable and has been presumed to suppress oncogenesis via an autophagy-mediated mechanism. Here, we show that Beclin 1 is a prenatal primary cytoplasmic protein but rapidly relocated into the nucleus during postnatal development in mice. Surprisingly, deletion of beclin1 in in vitro human cells did not block an autophagy response, but attenuated the expression of several DNA double-strand break (DSB) repair proteins and formation of repair complexes, and reduced an ability to repair DNA in the cells exposed to ionizing radiation (IR). Overexpressing Beclin 1 improved the repair of IR-induced DSB, but did not restore an autophagy response in cells lacking autophagy gene Atg7, suggesting that Beclin 1 may regulate DSB repair independent of autophagy in the cells exposed to IR. Indeed, we found that Beclin 1 could directly interact with DNA topoisomerase IIβ and was recruited to the DSB sites by the interaction. These findings reveal a novel function of Beclin 1 in regulation of DNA damage repair independent of its role in autophagy particularly when the cells are under radiation insult.


2020 ◽  
Author(s):  
Jasper Che-Yung Chien ◽  
Elie Tabet ◽  
Kelsey Pinkham ◽  
Cintia Carla da Hora ◽  
Jason Cheng-Yu Chang ◽  
...  

ABSTRACTTracking DNA double strand break (DSB) repair is paramount for the understanding and therapeutic development of various diseases including cancers. Herein, we describe a multiplexed bioluminescent repair reporter (BLRR) for non-invasive monitoring of DSB repair pathways in living cells and animals. The BLRR approach employs secreted Gaussia and Vargula luciferases to simultaneously detect homology-directed repair (HDR) and non-homologous end joining (NHEJ), respectively. BLRR data are consistent with next-generation sequencing results for reporting HDR (R2 = 0.9722) and NHEJ (R2 = 0.919) events. Moreover, BLRR analysis allows longitudinal tracking of HDR and NHEJ activities in cells, and enables detection of DSB repairs in xenografted tumours in vivo. Using the BLRR system, we observed a significant difference in the efficiency of CRISPR/Cas9-mediated editing with guide RNAs only 1-10 bp apart. Moreover, BLRR analysis detected altered dynamics for DSB repair induced by small-molecule modulators. Finally, we discovered HDR-suppressing functions of anticancer cardiac glycosides in human glioblastomas and glioma cancer stem-like cells via inhibition of DNA repair protein RAD51 homolog 1 (RAD51). The BLRR method provides a highly sensitive platform to simultaneously and longitudinally track HDR and NHEJ dynamics that is sufficiently versatile for elucidating the physiology and therapeutic development of DSB repair.


2008 ◽  
Vol 19 (7) ◽  
pp. 2926-2935 ◽  
Author(s):  
Ulrike Murzik ◽  
Peter Hemmerich ◽  
Stefanie Weidtkamp-Peters ◽  
Tobias Ulbricht ◽  
Wendy Bussen ◽  
...  

S100A11 is involved in a variety of intracellular activities such as growth regulation and differentiation. To gain more insight into the physiological role of endogenously expressed S100A11, we used a proteomic approach to detect and identify interacting proteins in vivo. Hereby, we were able to detect a specific interaction between S100A11 and Rad54B, which could be confirmed under in vivo conditions. Rad54B, a DNA-dependent ATPase, is described to be involved in recombinational repair of DNA damage, including DNA double-strand breaks (DSBs). Treatment with bleomycin, which induces DSBs, revealed an increase in the degree of colocalization between S100A11 and Rad54B. Furthermore, S100A11/Rad54B foci are spatially associated with sites of DNA DSB repair. Furthermore, while the expression of p21WAF1/CIP1 was increased in parallel with DNA damage, its protein level was drastically down-regulated in damaged cells after S100A11 knockdown. Down-regulation of S100A11 by RNA interference also abolished Rad54B targeting to DSBs. Additionally, S100A11 down-regulated HaCaT cells showed a restricted proliferation capacity and an increase of the apoptotic cell fraction. These observations suggest that S100A11 targets Rad54B to sites of DNA DSB repair sites and identify a novel function for S100A11 in p21-based regulation of cell cycle.


2018 ◽  
Vol 8 (4Dec) ◽  
Author(s):  
A Alipoor ◽  
R Fardid ◽  
S Sharifzadeh

Objective: Coronary heart disease (CHD) is one of the most common diseases. Coronary angiography (CAG) is an important apparatus used to diagnose and treat this disease. Since angiography is performed through exposure to ionizing radiation, it can cause harmful effects induced by double-stranded breaks in DNA which is potentially life-threatening damage. The aim of the present study is to investigate phosphorylation of Histone H2AX in the location of double-stranded breaks in peripheral blood lymphocytes as an indication of biological effects of radiation on angiography.Materials and Methods: This method is based on the phosphorylation measurement of Histone (gamma-H2AX or γ-H2AX) levels on serine 139 after the formation of DNA double-strand break. 5 cc of blood samples from 24 patients undergoing angiography were taken pre- and post-radiation. Blood lymphocytes were extracted, fixed and stained with specific γ-H2AX antibodies. Finally, the percentage of phosphorylation of Histone H2AX as an indicator of double-strand break was measured by a cytometry technique.Results: An increase was observed in all patients’ percentage of phosphorylated Histone H2AX (double-stranded breaks DNA) after radiation (20.15 ± 14.18) compared to pre-exposure time (1.52 ± 0.34). Also, the mean of DNA double-strand break is shown in a linear correlation with DAP.Discussion: Although induction of DNA double-strand breaks was associated with the radiation dose in patients, the effect of individual factors such as radio-sensitivity and regenerative capacity should not be ignored. In the future, if we are able to measure DNA damage response in every angiography patient, we will use it as a biomarker for the patient dose; this will promote public health.Conclusion: Using flow cytometers readings done automatically is possible to detect γ-H2AX in the number of blood cells, therefore, the use of this technique could play a significant role in monitoring patients.


2021 ◽  
Vol 1 (2) ◽  
pp. 225-238
Author(s):  
Mohsen Hooshyar ◽  
Daniel Burnside ◽  
Maryam Hajikarimlou ◽  
Katayoun Omidi ◽  
Alexander Jesso ◽  
...  

DNA double-strand breaks (DSBs) are the most deleterious form of DNA damage and are repaired through non-homologous end-joining (NHEJ) or homologous recombination (HR). Repair initiation, regulation and communication with signaling pathways require several histone-modifying and chromatin-remodeling complexes. In budding yeast, this involves three primary complexes: INO80-C, which is primarily associated with HR, SWR1-C, which promotes NHEJ, and RSC-C, which is involved in both pathways as well as the general DNA damage response. Here we identify ARP6 as a factor involved in DSB repair through an RSC-C-related pathway. The loss of ARP6 significantly reduces the NHEJ repair efficiency of linearized plasmids with cohesive ends, impairs the repair of chromosomal breaks, and sensitizes cells to DNA-damaging agents. Genetic interaction analysis indicates that ARP6, MRE11 and RSC-C function within the same pathway, and the overexpression of ARP6 rescues rsc2∆ and mre11∆ sensitivity to DNA-damaging agents. Double mutants of ARP6, and members of the INO80 and SWR1 complexes, cause a significant reduction in repair efficiency, suggesting that ARP6 functions independently of SWR1-C and INO80-C. These findings support a novel role for ARP6 in DSB repair that is independent of the SWR1 chromatin remodeling complex, through an apparent RSC-C and MRE11-associated DNA repair pathway.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4578-4587 ◽  
Author(s):  
Victoria J. Weston ◽  
Ceri E. Oldreive ◽  
Anna Skowronska ◽  
David G. Oscier ◽  
Guy Pratt ◽  
...  

Abstract The Ataxia Telangiectasia Mutated (ATM) gene is frequently inactivated in lymphoid malignancies such as chronic lymphocytic leukemia (CLL), T-prolymphocytic leukemia (T-PLL), and mantle cell lymphoma (MCL) and is associated with defective apoptosis in response to alkylating agents and purine analogues. ATM mutant cells exhibit impaired DNA double strand break repair. Poly (ADP-ribose) polymerase (PARP) inhibition that imposes the requirement for DNA double strand break repair should selectively sensitize ATM-deficient tumor cells to killing. We investigated in vitro sensitivity to the poly (ADP-ribose) polymerase inhibitor olaparib (AZD2281) of 5 ATM mutant lymphoblastoid cell lines (LCL), an ATM mutant MCL cell line, an ATM knockdown PGA CLL cell line, and 9 ATM-deficient primary CLLs induced to cycle and observed differential killing compared with ATM wildtype counterparts. Pharmacologic inhibition of ATM and ATM knockdown confirmed the effect was ATM-dependent and mediated through mitotic catastrophe independently of apoptosis. A nonobese diabetic/severe combined immunodeficient (NOD/SCID) murine xenograft model of an ATM mutant MCL cell line demonstrated significantly reduced tumor load and an increased survival of animals after olaparib treatment in vivo. Addition of olaparib sensitized ATM null tumor cells to DNA-damaging agents. We suggest that olaparib would be an appropriate agent for treating refractory ATM mutant lymphoid tumors.


Sign in / Sign up

Export Citation Format

Share Document