scholarly journals Rad54B Targeting to DNA Double-Strand Break Repair Sites Requires Complex Formation with S100A11

2008 ◽  
Vol 19 (7) ◽  
pp. 2926-2935 ◽  
Author(s):  
Ulrike Murzik ◽  
Peter Hemmerich ◽  
Stefanie Weidtkamp-Peters ◽  
Tobias Ulbricht ◽  
Wendy Bussen ◽  
...  

S100A11 is involved in a variety of intracellular activities such as growth regulation and differentiation. To gain more insight into the physiological role of endogenously expressed S100A11, we used a proteomic approach to detect and identify interacting proteins in vivo. Hereby, we were able to detect a specific interaction between S100A11 and Rad54B, which could be confirmed under in vivo conditions. Rad54B, a DNA-dependent ATPase, is described to be involved in recombinational repair of DNA damage, including DNA double-strand breaks (DSBs). Treatment with bleomycin, which induces DSBs, revealed an increase in the degree of colocalization between S100A11 and Rad54B. Furthermore, S100A11/Rad54B foci are spatially associated with sites of DNA DSB repair. Furthermore, while the expression of p21WAF1/CIP1 was increased in parallel with DNA damage, its protein level was drastically down-regulated in damaged cells after S100A11 knockdown. Down-regulation of S100A11 by RNA interference also abolished Rad54B targeting to DSBs. Additionally, S100A11 down-regulated HaCaT cells showed a restricted proliferation capacity and an increase of the apoptotic cell fraction. These observations suggest that S100A11 targets Rad54B to sites of DNA DSB repair sites and identify a novel function for S100A11 in p21-based regulation of cell cycle.

2016 ◽  
Vol 13 (114) ◽  
pp. 20150679 ◽  
Author(s):  
Philip J. Murray ◽  
Bart Cornelissen ◽  
Katherine A. Vallis ◽  
S. Jon Chapman

DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γ H2AX. Many copies of γ H2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti- γ H2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo . Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, 111 In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti- γ H2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti- γ H2AX-TAT and γ H2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti- γ H2AX antibody is labelled with Auger electron-emitting 111 In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti- γ H2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti- γ H2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage accumulation in the presence of Auger electron-emitting 111 In that is supported qualitatively by the available experimental data.


2021 ◽  
Vol 1 (2) ◽  
pp. 225-238
Author(s):  
Mohsen Hooshyar ◽  
Daniel Burnside ◽  
Maryam Hajikarimlou ◽  
Katayoun Omidi ◽  
Alexander Jesso ◽  
...  

DNA double-strand breaks (DSBs) are the most deleterious form of DNA damage and are repaired through non-homologous end-joining (NHEJ) or homologous recombination (HR). Repair initiation, regulation and communication with signaling pathways require several histone-modifying and chromatin-remodeling complexes. In budding yeast, this involves three primary complexes: INO80-C, which is primarily associated with HR, SWR1-C, which promotes NHEJ, and RSC-C, which is involved in both pathways as well as the general DNA damage response. Here we identify ARP6 as a factor involved in DSB repair through an RSC-C-related pathway. The loss of ARP6 significantly reduces the NHEJ repair efficiency of linearized plasmids with cohesive ends, impairs the repair of chromosomal breaks, and sensitizes cells to DNA-damaging agents. Genetic interaction analysis indicates that ARP6, MRE11 and RSC-C function within the same pathway, and the overexpression of ARP6 rescues rsc2∆ and mre11∆ sensitivity to DNA-damaging agents. Double mutants of ARP6, and members of the INO80 and SWR1 complexes, cause a significant reduction in repair efficiency, suggesting that ARP6 functions independently of SWR1-C and INO80-C. These findings support a novel role for ARP6 in DSB repair that is independent of the SWR1 chromatin remodeling complex, through an apparent RSC-C and MRE11-associated DNA repair pathway.


2020 ◽  
Author(s):  
Kenta Shinoda ◽  
Dali Zong ◽  
Elsa Callen ◽  
Wei Wu ◽  
Lavinia C. Dumitrache ◽  
...  

AbstractThe Shieldin complex, consisting of SHLD1, SHLD2, SHLD3 and REV7, shields DNA double strand breaks (DSBs) from nucleolytic resection. The end-protecting activity of Shieldin promotes productive non-homologous end joining (NHEJ) in G1 but can threaten genome integrity during S-phase by blocking homologous recombination (HR). Curiously, the penultimate Shieldin component, SHLD1 is one of the least abundant mammalian proteins. Here, we report that the transcription factors THAP1, YY1 and HCF1 bind directly to the SHLD1 promoter, where they cooperatively maintain the low basal expression of SHLD1. Functionally, this transcriptional network ensures that SHLD1 protein levels are kept in check to enable a proper balance between end protection and end resection during physiological DSB repair. In the context of BRCA1 deficiency, loss of THAP1 dependent SHLD1 expression confers cross resistance to PARP inhibitor and cisplatin, and shorter progression free survival in ovarian cancer patients. In contrast, loss of THAP1 in BRCA2 deficient cells increases genome instability and correlates with improved responses to chemotherapy. Pathogenic THAP1 mutations are causatively linked to the adult-onset torsion dystonia type 6 (DYT6) movement disorder, but the critical disease targets are unknown. We further demonstrate that murine models of Thap1-associated dystonia show reduced Shld1 expression concomitant with elevated levels of unresolved DNA damage in the brain. In summary, our study provides the first example of a transcriptional network that directly controls DSB repair choice and reveals a previously unsuspected link between DNA damage and dystonia.


2021 ◽  
Author(s):  
Julian Lutze ◽  
Donald Wolfgeher ◽  
Stephen J. Kron

AbstractThe majority of cancer patients is treated with ionizing radiation (IR), a relatively safe and effective treatment considered to target tumors by inducing DNA double strand breaks (DSBs). Despite clinical interest in increasing the efficacy of IR by preventing successful DSB repair, few effective radio-adjuvant therapies exist. Extensive literature suggests that chromatin modifiers play a role in the DSB repair and thus may represent a novel class of radiosensitizers. Indeed, chromatin has both local and global impacts on DSB formation, recognition of breaks, checkpoint signaling, recruitment of repair factors, and timely DSB resolution, suggesting that epigenetic deregulation in cancer may impact the efficacy of radiotherapy. Here, using tandem mass spectrometry proteomics to analyze global patterns of histone modification in MCF7 breast cancer cells following IR exposure, we find significant and long-lasting changes to the epigenome. Our results confirm that H3K27 trimethylation (H3K27me3), best known for mediating gene repression and regulating cell fate, increases after IR. H3K27me3 changes rapidly, accumulating at sites of DNA damage. Inhibitors of the Polycomb related complex subunit and H3K27 methyltransferase EZH2 confirm that H3K27me3 is necessary for DNA damage recognition and cell survival after IR. These studies provide an argument for evaluating EZH2 as a radiosensitization target and H3K27me3 as a marker for radiation response in cancer. Proteomic data are available via ProteomeXchange with identifier PXD019388.


2019 ◽  
Vol 27 (4) ◽  
pp. 1200-1213 ◽  
Author(s):  
Ainhoa Nieto ◽  
Makoto R. Hara ◽  
Victor Quereda ◽  
Wayne Grant ◽  
Vanessa Saunders ◽  
...  

Abstract Cellular DNA is constantly under threat from internal and external insults, consequently multiple pathways have evolved to maintain chromosomal fidelity. Our previous studies revealed that chronic stress, mediated by continuous stimulation of the β2-adrenergic-βarrestin-1 signaling axis suppresses activity of the tumor suppressor p53 and impairs genomic integrity. In this pathway, βarrestin-1 (βarr1) acts as a molecular scaffold to promote the binding and degradation of p53 by the E3-ubiquitin ligase, MDM2. We sought to determine whether βarr1 plays additional roles in the repair of DNA damage. Here we demonstrate that in mice βarr1 interacts with p53-binding protein 1 (53BP1) with major consequences for the repair of DNA double-strand breaks. 53BP1 is a principle component of the DNA damage response, and when recruited to the site of double-strand breaks in DNA, 53BP1 plays an important role coordinating repair of these toxic lesions. Here, we report that βarr1 directs 53BP1 degradation by acting as a scaffold for the E3-ubiquitin ligase Rad18. Consequently, knockdown of βarr1 stabilizes 53BP1 augmenting the number of 53BP1 DNA damage repair foci following exposure to ionizing radiation. Accordingly, βarr1 loss leads to a marked increase in irradiation resistance both in cells and in vivo. Thus, βarr1 is an important regulator of double strand break repair, and disruption of the βarr1/53BP1 interaction offers an attractive strategy to protect cells against high levels of exposure to ionizing radiation.


2009 ◽  
Vol 187 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Troy E. Messick ◽  
Roger A. Greenberg

The intimate relationship between DNA double-strand break (DSB) repair and cancer susceptibility has sparked profound interest in how transactions on DNA and chromatin surrounding DNA damage influence genome integrity. Recent evidence implicates a substantial commitment of the cellular DNA damage response machinery to the synthesis, recognition, and hydrolysis of ubiquitin chains at DNA damage sites. In this review, we propose that, in order to accommodate parallel processes involved in DSB repair and checkpoint signaling, DSB-associated ubiquitin structures must be nonuniform, using different linkages for distinct functional outputs. We highlight recent advances in the study of nondegradative ubiquitin signaling at DSBs, and discuss how recognition of different ubiquitin structures may influence DNA damage responses.


2022 ◽  
Author(s):  
Tej Pandita ◽  
Vijay Kumari Charaka ◽  
Sharmistha Chakraborty ◽  
Chi-Lin Tsai ◽  
Xiaoyan Wang ◽  
...  

Efficient DNA double strand break (DSB) repair by homologous recombination (HR), as orchestrated by histone and non-histone proteins, is critical to genome stability, replication, transcription, and cancer avoidance. Here we report that Heterochromatin Protein1 beta (HP1β) acts as a key component of the HR DNA resection step by regulating BRCA1 enrichment at DNA damage sites, a function largely dependent on the HP1β chromo shadow domain (CSD). HP1β itself is enriched at DSBs within gene-rich regions through a CSD interaction with Chromatin Assembly Factor 1 (CAF1) and HP1β depletion impairs subsequent BRCA1 enrichment. An added interaction of the HP1β CSD with the Polycomb Repressor Complex 1 ubiquitinase component RING1A facilitates BRCA1 recruitment by increasing H2A lysine 118-119 ubiquitination, a marker for BRCA1 recruitment. Our findings reveal that HP1β interactions, mediated through its CSD with RING1A, promote H2A ubiquitination and facilitate BRCA1 recruitment at DNA damage sites, a critical step in DSB repair by the HR pathway. These collective results unveil how HP1β is recruited to DSBs in gene-rich regions and how HP1β subsequently promotes BRCA1 recruitment to further HR DNA damage repair by stimulating CtIP-dependent resection.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Songli Zhu ◽  
Mohammadjavad Paydar ◽  
Feifei Wang ◽  
Yanqiu Li ◽  
Ling Wang ◽  
...  

DNA double strand breaks (DSBs) have detrimental effects on cell survival and genomic stability, and are related to cancer and other human diseases. In this study, we identified microtubule-depolymerizing kinesin Kif2C as a protein associated with DSB-mimicking DNA templates and known DSB repair proteins in Xenopus egg extracts and mammalian cells. The recruitment of Kif2C to DNA damage sites was dependent on both PARP and ATM activities. Kif2C knockdown or knockout led to accumulation of endogenous DNA damage, DNA damage hypersensitivity, and reduced DSB repair via both NHEJ and HR. Interestingly, Kif2C depletion, or inhibition of its microtubule depolymerase activity, reduced the mobility of DSBs, impaired the formation of DNA damage foci, and decreased the occurrence of foci fusion and resolution. Taken together, our study established Kif2C as a new player of the DNA damage response, and presented a new mechanism that governs DSB dynamics and repair.


2013 ◽  
Vol 34 (5) ◽  
pp. 778-793 ◽  
Author(s):  
Qiong Fu ◽  
Julia Chow ◽  
Kara A. Bernstein ◽  
Nodar Makharashvili ◽  
Sucheta Arora ◽  
...  

In the DNA damage response, many repair and signaling molecules mobilize rapidly at the sites of DNA double-strand breaks. This network of immediate responses is regulated at the level of posttranslational modifications that control the activation of DNA processing enzymes, protein kinases, and scaffold proteins to coordinate DNA repair and checkpoint signaling. Here we investigated the DNA damage-induced oligomeric transitions of the Sae2 protein, an important enzyme in the initiation of DNA double-strand break repair. Sae2 is a target of multiple phosphorylation events, which we identified and characterizedin vivoin the budding yeastSaccharomyces cerevisiae. Both cell cycle-dependent and DNA damage-dependent phosphorylation sites in Sae2 are important for the survival of DNA damage, and the cell cycle-regulated modifications are required to prime the damage-dependent events. We found that Sae2 exists in the form of inactive oligomers that are transiently released into smaller active units by this series of phosphorylations. DNA damage also triggers removal of Sae2 through autophagy and proteasomal degradation, ensuring that active Sae2 is present only transiently in cells. Overall, this analysis provides evidence for a novel type of protein regulation where the activity of an enzyme is controlled dynamically by posttranslational modifications that regulate its solubility and oligomeric state.


Genes ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 25 ◽  
Author(s):  
Mahmoud Toulany

More than half of cancer patients receive radiotherapy as a part of their cancer treatment. DNA double-strand breaks (DSBs) are considered as the most lethal form of DNA damage and a primary cause of cell death and are induced by ionizing radiation (IR) during radiotherapy. Many malignant cells carry multiple genetic and epigenetic aberrations that may interfere with essential DSB repair pathways. Additionally, exposure to IR induces the activation of a multicomponent signal transduction network known as DNA damage response (DDR). DDR initiates cell cycle checkpoints and induces DSB repair in the nucleus by non-homologous end joining (NHEJ) or homologous recombination (HR). The canonical DSB repair pathways function in both normal and tumor cells. Thus, normal-tissue toxicity may limit the targeting of the components of these two pathways as a therapeutic approach in combination with radiotherapy. The DSB repair pathways are also stimulated through cytoplasmic signaling pathways. These signaling cascades are often upregulated in tumor cells harboring mutations or the overexpression of certain cellular oncogenes, e.g., receptor tyrosine kinases, PIK3CA and RAS. Targeting such cytoplasmic signaling pathways seems to be a more specific approach to blocking DSB repair in tumor cells. In this review, a brief overview of cytoplasmic signaling pathways that have been reported to stimulate DSB repair is provided. The state of the art of targeting these pathways will be discussed. A greater understanding of the underlying signaling pathways involved in DSB repair may provide valuable insights that will help to design new strategies to improve treatment outcomes in combination with radiotherapy.


Sign in / Sign up

Export Citation Format

Share Document