scholarly journals Voxel size dependency, reproducibility and sensitivity of an in vivo bone loading estimation algorithm

2016 ◽  
Vol 13 (114) ◽  
pp. 20150991 ◽  
Author(s):  
Patrik Christen ◽  
Friederike A. Schulte ◽  
Alexander Zwahlen ◽  
Bert van Rietbergen ◽  
Stephanie Boutroy ◽  
...  

A bone loading estimation algorithm was previously developed that provides in vivo loading conditions required for in vivo bone remodelling simulations. The algorithm derives a bone's loading history from its microstructure as assessed by high-resolution (HR) computed tomography (CT). This reverse engineering approach showed accurate and realistic results based on micro-CT and HR-peripheral quantitative CT images. However, its voxel size dependency, reproducibility and sensitivity still need to be investigated, which is the purpose of this study. Voxel size dependency was tested on cadaveric distal radii with micro-CT images scanned at 25 µm and downscaled to 50, 61, 75, 82, 100, 125 and 150 µm. Reproducibility was calculated with repeated in vitro as well as in vivo HR-pQCT measurements at 82 µm. Sensitivity was defined using HR-pQCT images from women with fracture versus non-fracture, and low versus high bone volume fraction, expecting similar and different loading histories, respectively. Our results indicate that the algorithm is voxel size independent within an average (maximum) error of 8.2% (32.9%) at 61 µm, but that the dependency increases considerably at voxel sizes bigger than 82 µm. In vitro and in vivo reproducibility are up to 4.5% and 10.2%, respectively, which is comparable to other in vitro studies and slightly higher than in other in vivo studies. Subjects with different bone volume fraction were clearly distinguished but not subjects with and without fracture. This is in agreement with bone adapting to customary loading but not to fall loads. We conclude that the in vivo bone loading estimation algorithm provides reproducible, sensitive and fairly voxel size independent results at up to 82 µm, but that smaller voxel sizes would be advantageous.

Bone ◽  
2009 ◽  
Vol 44 ◽  
pp. S375
Author(s):  
E. Perilli⁎ ◽  
A.M. Briggs ◽  
J.D. Wark ◽  
S. Kantor ◽  
I.H. Parkinson ◽  
...  

2012 ◽  
Vol 83 (3) ◽  
pp. 402-409 ◽  
Author(s):  
Nan Ru ◽  
Sean Shih-Yao Liu ◽  
Li Zhuang ◽  
Song Li ◽  
Yuxing Bai

ABSTRACT Objective: To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. Materials and Methods: A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P < .05. Results: From day 3 to day 7, bone volume fraction, structure model index, trabecular thickness, and trabecular separation decreased significantly on the compression side, but the same parameters increased significantly on the tension side from day 7 to day 14. Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Conclusions: Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.


2005 ◽  
Vol 127 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Yener N. Yeni ◽  
Gregory T. Christopherson ◽  
X. Neil Dong ◽  
Do-Gyoon Kim ◽  
David P. Fyhrie

The level of structural detail that can be acquired and incorporated in a finite element (FE) analysis might greatly influence the results of microcomputed tomography (μCT)-based FE simulations, especially when relatively large bones, such as whole vertebrae, are of concern. We evaluated the effect of scanning and reconstruction voxel size on the μCT-based FE analyses of human cancellous tissue samples for fixed- and free-end boundary conditions using different combinations of scan/reconstruction voxel size. We found that the bone volume fraction (BV/TV) did not differ considerably between images scanned at 21 and 50 μm and reconstructed at 21, 50, or 110 μm (−0.5% to 7.8% change from the 21/21 μm case). For the images scanned and reconstructed at 110 μm, however, there was a large increase in BV/TV compared to the 21/21 μm case (58.7%). Fixed-end boundary conditions resulted in 1.8% [coefficient of variation (COV)] to 14.6% (E) difference from the free-end case. Dependence of model output parameters on scanning and reconstruction voxel size was similar between free- and fixed-end simulations. Up to 26%, 30%, 17.8%, and 32.3% difference in modulus (E), and average (VMExp), standard deviation (VMSD) and coefficient of variation (COV) of von Mises stresses, respectively, was observed between the 21/21 μm case and other scan/reconstruction combinations within the same (free or fixed) simulation group. Observed differences were largely attributable to scanning resolution, although reconstruction resolution also contributed significantly at the largest voxel sizes. All 21/21 μm results (taken as the gold standard) could be predicted from the 21/50 radj2=0.91-0.99;p<0.001, 21/110 radj2=0.58-0.99;p<0.02 and 50/50 results radj2=0.61-0.97;p<0.02. While BV/TV, VMSD, and VMExp/σz from the 21/21 could be predicted by those from the 50/110 radj2=0.63-0.93;p<0.02 and 110/110 radj2=0.41-0.77;p<0.05 simulations as well, prediction of E, VMExp, and COV became marginally significant 0.04<p<0.13 at 50/110 and nonsignificant at 110/110 0.21<p<0.70. In conclusion, calculation of cancellous bone modulus, mean trabecular stress, and other parameters are subject to large errors at 110/110 μm voxel size. However, enough microstructural details for studying bone volume fraction, trabecular shear stress scatter, and trabecular shear stress amplification VMExp/σz can be resolved using a 21/110 μm, 50/110 μm, and 110/110 μm voxels for both free- and fixed-end constraints.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
X.-L. Qi ◽  
J. Liu ◽  
P. N. Burns ◽  
G. A. Wright

Blood supply is crucial for rapid growth of a malignant tumor; medical imaging can play an important role in evaluating the vascular characterstics of tumors. Magnetic resonance imaging (MRI) and micro-computed tomography (CT) are able to detect tumors and measure blood volumes of microcirculation in tissue. In this study, we used MR imaging and micro-CT to assess the microcirculation in a VX2 tumor model in rabbits. MRI characterization was performed using the intravascular contrast agent Clariscan (NC100150-Injection); micro-CT with Microfil was used to directly depict blood vessels with diameters as low as 17 um in tissue. Relative blood volume fraction (rBVF) in the tumor rim and blood vessel density (rBVD) over the whole tumor was calculated using the two imaging methods. Our study indicates that rBVF is negatively related to the volume of the tumor measured by ultrasound (R=0.90). rBVF in the tissue of a VX2 tumor measured by MRIin vivowas qualitatively consistent with the rBVD demonstrated by micro-CTin vitro(R=0.97). The good correlation between the two methods indicates that MRI studies are potentially valuable for assessing characteristics or tumor vascularity and for assessing response to therapy noninvasively.


2006 ◽  
Vol 129 (4) ◽  
pp. 481-486 ◽  
Author(s):  
Chi Hyun Kim ◽  
Henry Zhang ◽  
George Mikhail ◽  
Dietrich von Stechow ◽  
Ralph Müller ◽  
...  

Microimaging based finite element analysis is widely used to predict the mechanical properties of trabecular bone. The choice of thresholding technique, a necessary step in converting grayscale images to finite element models, can significantly influence the predicted bone volume fraction and mechanical properties. Therefore, we investigated the effects of thresholding techniques on microcomputed tomography (micro-CT) based finite element models of trabecular bone. Three types of thresholding techniques were applied to 16-bit micro-CT images of trabecular bone to create three different models per specimen. Bone volume fractions and apparent moduli were predicted and compared to experimental results. In addition, trabecular tissue mechanical parameters and morphological parameters were compared among different models. Our findings suggest that predictions of apparent mechanical properties and structural properties agree well with experimental measurements regardless of the choice of thresholding methods or the format of micro-CT images.


2000 ◽  
Vol 18 (3) ◽  
pp. 275-279 ◽  
Author(s):  
Sophie Allein ◽  
Evangelia Mihalopoulou ◽  
Rob Luypaert ◽  
Olivia Louis ◽  
George Panayiotakis ◽  
...  

2007 ◽  
Vol 86 (12) ◽  
pp. 1207-1211 ◽  
Author(s):  
Z. Zhao ◽  
Z. Wang ◽  
C. Ge ◽  
P. Krebsbach ◽  
R.T. Franceschi

Marrow stromal cells (MSCs) include stem cells capable of forming all mesenchymal tissues, including bone. However, before MSCs can be successfully used in regeneration procedures, methods must be developed to stimulate their differentiation selectively to osteoblasts. Runx2, a bone-specific transcription factor, is known to stimulate osteoblast differentiation. In the present study, we tested the hypothesis that Runx2 gene therapy can be used to heal a critical-sized defect in mouse calvaria. Runx2-engineered MSCs displayed enhanced osteogenic potential and osteoblast-specific gene expression in vitro and in vivo. Runx2-expressing cells also dramatically enhanced the healing of critical-sized calvarial defects and increased both bone volume fraction and bone mineral density. These studies provide a novel route for enhancing osteogenesis that may have future therapeutic applications for craniofacial bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document