scholarly journals Architecture and mechanism of the central gear in an ancient molecular timer

2017 ◽  
Vol 14 (128) ◽  
pp. 20161065 ◽  
Author(s):  
Martin Egli

Molecular clocks are the product of natural selection in organisms from bacteria to human and their appearance early in evolution such as in the prokaryotic cyanobacterium Synechococcus elongatus suggests that these timers served a crucial role in genetic fitness. Thus, a clock allows cyanobacteria relying on photosynthesis and nitrogen fixation to temporally space the two processes and avoid exposure of nitrogenase carrying out fixation to high levels of oxygen produced during photosynthesis. Fascinating properties of molecular clocks are the long time constant, their precision and temperature compensation. Although these are hallmarks of all circadian oscillators, the actual cogs and gears that control clocks vary widely between organisms, indicating that circadian timers evolved convergently multiple times, owing to the selective pressure of an environment with a daily light/dark cycle. In S. elongatus , the three proteins KaiA, KaiB and KaiC in the presence of ATP constitute a so-called post-translational oscillator (PTO). The KaiABC PTO can be reconstituted in an Eppendorf tube and keeps time in a temperature-compensated manner. The ease by which the KaiABC clock can be studied in vitro has made it the best-investigated molecular clock system. Over the last decade, structures of all three Kai proteins and some of their complexes have emerged and mechanistic aspects have been analysed in considerable detail. This review focuses on the central gear of the S. elongatus clock and only enzyme among the three proteins: KaiC. Our determination of the three-dimensional structure of KaiC early in the quest for a better understanding of the inner workings of the cyanobacterial timer revealed its unusual architecture and conformational differences and unique features of the two RecA-like domains constituting KaiC. The structure also pinpointed phosphorylation sites and differential interactions with ATP molecules at subunit interfaces, and helped guide experiments to ferret out mechanistic aspects of the ATPase, auto-phosphorylation and auto-dephosphorylation reactions catalysed by the homo-hexamer. Comparisons between the structure of KaiC and those of nanomachines such as F1-ATPase and CaMKII also exposed shared architectural features (KaiC/ATPase), mechanistic principles (KaiC/CaMKII) and phenomena, such as subunit exchange between hexameric particles critical for function (clock synchronization, KaiABC; memory-storage, CaMKII).

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2273
Author(s):  
Wan-Ying Huang ◽  
Norichika Hashimoto ◽  
Ryuhei Kitai ◽  
Shin-ichiro Suye ◽  
Satoshi Fujita

The occasional malignant transformation of intracranial epidermoid cysts into squamous cell carcinomas remains poorly understood; the development of an in vitro cyst model is urgently needed. For this purpose, we designed a hollow nanofiber sphere, the “nanofiber-mâché ball.” This hollow structure was fabricated by electrospinning nanofiber onto alginate hydrogel beads followed by dissolving the beads. A ball with approximately 230 mm3 inner volume provided a fibrous geometry mimicking the topography of the extracellular matrix. Two ducts located on opposite sides provided a route to exchange nutrients and waste. This resulted in a concentration gradient that induced oriented migration, in which seeded cells adhered randomly to the inner surface, formed a highly oriented structure, and then secreted a dense web of collagen fibrils. Circumferentially aligned fibers on the internal interface between the duct and hollow ball inhibited cells from migrating out of the interior, similar to a fish bottle trap. This structure helped to form an adepithelial layer on the inner surface. The novel nanofiber-mâché technique, using a millimeter-sized hollow fibrous scaffold, is excellently suited to investigating cyst physiology.


2003 ◽  
Vol 3 ◽  
pp. 623-635 ◽  
Author(s):  
Ivan Y. Torshin ◽  
Robert W. Harrison

How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context ofin vivoprotein folding (which has been studied only for a few proteins), the roles of the fundamental physical forces in thein vitrofolding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces). Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics.


2008 ◽  
Vol 190 (6) ◽  
pp. 2056-2064 ◽  
Author(s):  
Jonathan E. Ulmer ◽  
Yap Boum ◽  
Christopher D. Thouvenel ◽  
Hannu Myllykallio ◽  
Carol Hopkins Sibley

ABSTRACT A novel FAD-dependent thymidylate synthase, ThyX, is present in a variety of eubacteria and archaea, including the mycobacteria. A short motif found in all thyX genes, RHRX7-8S, has been identified. The three-dimensional structure of the Mycobacterium tuberculosis ThyX enzyme has been solved. Building upon this information, we used directed mutagenesis to produce 67 mutants of the M. tuberculosis thyX gene. Each enzyme was assayed to determine its ability to complement the defect in thymidine biosynthesis in a ΔthyA strain of Escherichia coli. Enzymes from selected strains were then tested in vitro for their ability to catalyze the oxidation of NADPH and the release of a proton from position 5 of the pyrimidine ring of dUMP. The results defined an extended motif of amino acids essential to enzyme activity in M. tuberculosis (Y44X24 H69X25R95HRX7 S105XRYX90R199 [with the underlined histidine acting as the catalytic residue and the underlined serine as the nucleophile]) and provided insight into the ThyX reaction mechanism. ThyX is found in a variety of bacterial pathogens but is absent in humans, which depend upon an unrelated thymidylate synthase, ThyA. Therefore, ThyX is a potential target for development of antibacterial drugs.


2019 ◽  
Vol 5 (2) ◽  
pp. 27 ◽  
Author(s):  
Daisuke Takagi ◽  
Waka Lin ◽  
Takahiko Matsumoto ◽  
Hidekazu Yaginuma ◽  
Natsuko Hemmi ◽  
...  

In recent years, bioprinting has emerged as a promising technology for the construction of three-dimensional (3D) tissues to be used in regenerative medicine or in vitro screening applications. In the present study, we present the development of an inkjet-based bioprinting system to arrange multiple cells and materials precisely into structurally organized constructs. A novel inkjet printhead has been specially designed for live cell ejection. Droplet formation is powered by piezoelectric membrane vibrations coupled with mixing movements to prevent cell sedimentation at the nozzle. Stable drop-on-demand dispensing and cell viability were validated over an adequately long time to allow the fabrication of 3D tissues. Reliable control of cell number and spatial positioning was demonstrated using two separate suspensions with different cell types printed sequentially. Finally, a process for constructing stratified Mille-Feuille-like 3D structures is proposed by alternately superimposing cell suspensions and hydrogel layers with a controlled vertical resolution. The results show that inkjet technology is effective for both two-dimensional patterning and 3D multilayering and has the potential to facilitate the achievement of live cell bioprinting with an unprecedented level of precision.


2003 ◽  
Vol 77 (6) ◽  
pp. 3669-3679 ◽  
Author(s):  
Caterina Trozzi ◽  
Linda Bartholomew ◽  
Alessandra Ceccacci ◽  
Gabriella Biasiol ◽  
Laura Pacini ◽  
...  

ABSTRACT The hepatitis C virus (HCV) serine protease is necessary for viral replication and represents a valid target for developing new therapies for HCV infection. Potent and selective inhibitors of this enzyme have been identified and shown to inhibit HCV replication in tissue culture. The optimization of these inhibitors for clinical development would greatly benefit from in vitro systems for the identification and the study of resistant variants. We report the use HCV subgenomic replicons to isolate and characterize mutants resistant to a protease inhibitor. Taking advantage of the replicons' ability to transduce resistance to neomycin, we selected replicons with decreased sensitivity to the inhibitor by culturing the host cells in the presence of the inhibitor and neomycin. The selected replicons replicated to the same extent as those in parental cells. Sequence analysis followed by transfection of replicons containing isolated mutations revealed that resistance was mediated by amino acid substitutions in the protease. These results were confirmed by in vitro experiments with mutant enzymes and by modeling the inhibitor in the three-dimensional structure of the protease.


2006 ◽  
Vol 96 (11) ◽  
pp. 671-684 ◽  
Author(s):  
Alexandre Fontayne ◽  
Karen Vanhoorelbeke ◽  
Inge Pareyn ◽  
Isabel Van Rompaey ◽  
Muriel Meiring ◽  
...  

SummaryFab-fragments of the monoclonal antibody 6B4, raised against human glycoprotein Ibα (GPIbα), have a powerful antithrombotic effect in baboons by blocking the GPIbα binding site for von Willebrand factor (VWF), without significant prolongation of the skin bleeding time. In order to bring this antibody to the clinic,we here humanized for the first time an anti-human GPIbα by variable-domain resurfacing guided by computer modeling. First, the genes coding for the variable regions of the heavy and light chains of 6B4 were cloned and sequenced. Based on this,a three-dimensional structure of the Fv-fragment was constructed by using homology-based modeling, and with this and comparison with antibodies with known structure,”murine” putative immunogenic residues which are exposed, were changed for “human-like” residues. The humanized Fab-fragment, h6B4-Fab, was constructed in the pKaneo vector system, expressed and purified and showed in vitro an unaltered, even slightly higher binding affinity for its antigen than the murine form as determined by different ELISA set-ups and surface plasmon resonance. Finally, injection of doses of 0.1 to 1.5 mg/kg of h6B4-Fab in baboons showed that both pharmacokinetics and ex-vivo bio-activity of the molecule were to a large extent preserved.In conclusion, the method used here to humanize 6B4 by resurfacing resulted in a fully active derivative, which is now ready for further development.


2004 ◽  
Vol 165 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Shushi Nagamori ◽  
Irina N. Smirnova ◽  
H. Ronald Kaback

YidC of Echerichia coli, a member of the conserved Alb3/Oxa1/YidC family, is postulated to be important for biogenesis of membrane proteins. Here, we use as a model the lactose permease (LacY), a membrane transport protein with a known three-dimensional structure, to determine whether YidC plays a role in polytopic membrane protein insertion and/or folding. Experiments in vivo and with an in vitro transcription/translation/insertion system demonstrate that YidC is not necessary for insertion per se, but plays an important role in folding of LacY. By using the in vitro system and two monoclonal antibodies directed against conformational epitopes, LacY is shown to bind the antibodies poorly in YidC-depleted membranes. Moreover, LacY also folds improperly in proteoliposomes prepared without YidC. However, when the proteoliposomes are supplemented with purified YidC, LacY folds correctly. The results indicate that YidC plays a primary role in folding of LacY into its final tertiary conformation via an interaction that likely occurs transiently during insertion into the lipid phase of the membrane.


2015 ◽  
Vol 9 (2) ◽  
pp. 0-0
Author(s):  
Найденов ◽  
E. Naydenov

This work is devoted to the development of technology and special equipment for the cultivation of spontaneously developing functioning endothelial capillary networks in vitro as the basis of artificial cloth-like structures with desired biological properties. It is the scientific and engineering projects RFBR №94-04-13544 «Structural analysis of microvascular bifurcations" and №96-04-50991 «Cell and Tissue Engineering endothelium (formation in endothelial culture in vitro the functioning self-developing capillary networks)." The proposed technology allows the author to form three-dimensional capillary endothelial network around micro-fluidic arrays, immersed in a specially designed dynamic gel. In 2013, the Korean research team under the lea-dership Noo Li Jeon has reproduced, using a similar approach, the phenomenon of self-developing functioning endothelial capillary networks with mass transfer in vitro. It has fully confirmed the validity of the concept pro-posed in the listed projects. Using system of the mathematical modeling Matlab & Simulink and system engi-neering design Cadence Orcad it was developed simulation mathematical model and circuit diagrams experimental reactor modules, it allows to saving considerable financial resources allocated to research and de-velopment of this kind. The resulting model contains 5.4 million basic Simulink blocks and performs more than 7,000 different mathematical functions, reflecting the behavior of devices in stationary and non-stationary conditions. Device control is based on neural network technology. Portable stand-alone microcomputers cyber platform includes microfluidic matrix, generators of microflows liquid phase nutrient medium, life-support systems of endothelial culture system of automatic digital imaging process of angiogenesis, the transmission system of encrypted data over a secure radio, digital control systems. All systems are backed up multiple times, allowing the product to operate in stand-alone mode for a long time (up to a year or more).


Sign in / Sign up

Export Citation Format

Share Document