scholarly journals Mitochondrial DNA 3243A>G heteroplasmy is associated with changes in cytoskeletal protein expression and cell mechanics

2017 ◽  
Vol 14 (131) ◽  
pp. 20170071 ◽  
Author(s):  
Judith Kandel ◽  
Martin Picard ◽  
Douglas C. Wallace ◽  
David M. Eckmann

Mitochondrial and mechanical alterations in cells have both been shown to be hallmarks of human disease. However, little research has endeavoured to establish connections between these two essential features of cells in both functional and dysfunctional situations. In this work, we hypothesized that a specific genetic alteration in mitochondrial function known to cause human disease would trigger changes in cell mechanics. Using a previously characterized set of mitochondrial cybrid cell lines, we examined the relationship between heteroplasmy for the mitochondrial DNA (mtDNA) 3243A>G mutation, the cell cytoskeleton, and resulting cellular mechanical properties. We found that cells with increasing mitochondrial dysfunction markedly differed from one another in gene expression and protein production of various co-regulated cytoskeletal elements. The intracellular positioning and organization of actin also differed across cell lines. To explore the relationship between these changes and cell mechanics, we then measured cellular mechanical properties using atomic force microscopy and found that cell stiffness correlated with gene expression data for known determinants of cell mechanics, γ-actin, α-actinin and filamin A. This work points towards a mechanism linking mitochondrial genetics to single-cell mechanical properties. The transcriptional and structural regulation of cytoskeletal components by mitochondrial function may explain why energetic and mechanical alterations often coexist in clinical conditions.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Julie A. Stortz ◽  
Russell B. Hawkins ◽  
David C. Holden ◽  
Steven L. Raymond ◽  
Zhongkai Wang ◽  
...  

Abstract Severe blunt trauma is associated with an early ‘genomic storm’ which causes simultaneous up- and down-regulation of host protective immunity. Excessive inflammation can lead to organ injury. In the absence of infection, the inflammatory response is presumably driven by release of endogenous alarmins called danger-associated molecular patterns (DAMPs), which initiate immune responses through pattern-recognition receptors (PRR). Here we examined the relationship between concentrations of cell-free (cf) nuclear DNA (ncDNA) and mitochondrial DNA (mtDNA) within 24 hours post trauma with circulating leukocyte transcriptomics and plasma IL-6 concentrations, as well as the patients’ clinical trajectories. In 104 patients enrolled from two level-1 trauma centers, ncDNA and mtDNA concentrations were increased within 24 hours of severe trauma, but only ncDNA concentrations correlated with leukocyte gene expression and outcomes. Surprisingly, ncDNA, not mtDNA concentrations, were significantly elevated in trauma patients who developed chronic critical illness versus rapid clinical recovery. Plasma IL-6 and leukocyte transcriptomics were better predictors of outcomes than cfDNA levels. Although mtDNA and ncDNA are significantly increased in the immediate post-trauma period, the dramatic inflammatory and gene expression changes seen after severe trauma are only weakly correlated with ncDNA concentrations, and more importantly, mtDNA concentrations are not associated with adverse clinical trajectories.


Author(s):  
Jarett Michaelson ◽  
Heejin Choi ◽  
Peter So ◽  
Hayden Huang

Immortalized cells are commonly used as analogs for primary cells in many cell mechanics, tissue engineering, and biochemical assays. However, it is not well-established whether immortal cell lines can mimic the behavior of primary cells in more physiological (three-dimensional) environments. For this project, we investigate the mechanical properties of primary cardiac fibroblasts (CFs) and 3T3 transformed fibroblasts when cultured in cell bi-layers by comparing the cells’ viscoelastic properties.


Cells ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 136 ◽  
Author(s):  
Martin Kräter ◽  
Jiranuwat Sapudom ◽  
Nicole Bilz ◽  
Tilo Pompe ◽  
Jochen Guck ◽  
...  

The cellular cytoskeleton is central for key cellular functions, and as such is a marker for diseased and infected cell states. Here we analyzed infection with rubella virus (RV) strains with respect to phenotypes in cellular mechanical properties, cell movement, and viral cytopathogenicity. Real-time deformability cytometry (RT-DC), as a high-throughput platform for the assessment of cell mechanics, revealed a correlation of an increase in cortical filamentous-actin (F-actin) with a higher cellular stiffness. The additional reduction of stress fibers noted for only some RV strains as the most severe actin rearrangement lowered cell stiffness. Furthermore, a reduced collective and single cell migration speed in a wound healing assay was detected in addition to severe changes in cell morphology. The latter was followed by activation of caspase 3/7 as a sign for induction of apoptosis. Our study emphasizes RT-DC technology as a sensitive means to characterize viral cell populations and to implicate alterations of cell mechanical properties with cell functions. These interdependent events are not only promising options to elucidate viral spread and to understand viral pathologies within the infected host. They also contribute to any diseased cell state, as exemplified by RV as a representative agent for cytoskeletal alterations involved in a cytopathological outcome.


2000 ◽  
Vol 11 (4) ◽  
pp. 1471-1485 ◽  
Author(s):  
Yingying Tang ◽  
Eric A. Schon ◽  
Ekkehard Wilichowski ◽  
Martel E. Vazquez-Memije ◽  
Edgar Davidson ◽  
...  

Mitochondria from patients with Kearns–Sayre syndrome harboring large-scale rearrangements of human mitochondrial DNA (mtDNA; both partial deletions and a partial duplication) were introduced into human cells lacking endogenous mtDNA. Cytoplasmic hybrids containing 100% wild-type mtDNA, 100% mtDNA with partial duplications, and 100% mtDNA with partial deletions were isolated and characterized. The cell lines with 100% deleted mtDNAs exhibited a complete impairment of respiratory chain function and oxidative phosphorylation. In contrast, there were no detectable respiratory chain or protein synthesis defects in the cell lines with 100% duplicated mtDNAs. Unexpectedly, the mass of mtDNA was identical in all cell lines, despite the fact that different lines contained mtDNAs of vastly different sizes and with different numbers of replication origins, suggesting that mtDNA copy number may be regulated by tightly controlled mitochondrial dNTP pools. In addition, quantitation of mtDNA-encoded RNAs and polypeptides in these lines provided evidence that mtDNA gene copy number affects gene expression, which, in turn, is regulated at both the post-transcriptional and translational levels.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Bin Li ◽  
Jianhua Cheng ◽  
Hongyun Wang ◽  
Sida Zhao ◽  
Haibo Zhu ◽  
...  

Abstract Background To investigate the relationship between cyclin B1 (CCNB1) gene expression and cavernous sinus invasion in pituitary adenomas. Methods Twenty-four pituitary adenoma tissue samples were examined by RT-qPCR and Western blot to assess the mRNA expression levels and protein levels of CCNB1, E-cadherin and N-cadherin. Correlation analyses between the expression levels of E-cadherin, N-cadherin and CCNB1 were performed. After lentivirus-mediated knockdown of CCNB1 in rat pituitary adenoma cell lines (GH3 and GT1-1), cell function changes were studied. The relationship between CCNB1 and epithelial-mesenchymal transition (EMT) was further verified by animal experiments. Results CCNB1 and N-cadherin gene expression were significantly higher in the invasive pituitary adenomas than in the non-invasive pituitary adenomas. Conversely, E-cadherin expression in the invasive pituitary adenomas was significantly lower. CCNB1 gene expression was downregulated in the GH3 and GT1-1 pituitary adenoma cell lines; N-cadherin expression was also decreased, but E-cadherin expression was increased. These results were confirmed in vivo. After downregulation of CCNB1, cell invasion and migration was significantly reduced in Transwell experiments. Conclusion High CCNB1 expression in pituitary adenoma affects cavernous sinus invasion through EMT.


2006 ◽  
Vol 11 (8) ◽  
pp. 883-891 ◽  
Author(s):  
Dina Bellizzi ◽  
Paola Cavalcante ◽  
Daniela Taverna ◽  
Giuseppina Rose ◽  
Giuseppe Passarino ◽  
...  

2005 ◽  
Vol 27 (3) ◽  
pp. 24-27
Author(s):  
Anthony Schapira

Mitochondria are ubiquitous in eukaryotic cells and one of their important functions is to provide ATP via oxidative phosphorylation (OXPHOS). The mitochondria also host other biochemical pathways, including -oxidation, Krebs' citric acid cycle and parts of the urea cycle. Thus, the mitochondria play a pivotal role in cellular biochemistry. The relationship of mitochondria to human disease has been identified only recently, but has now become one of the most rapidly expanding areas of human pathology. Mitochondrial disorders may be a consequence of inherited defects of either the nuclear or mitochondrial genomes or, alternatively, may be due to endogenous or exogenous environmental toxins. This article will focus upon abnormalities of mitochondrial DNA (mtDNA) and human disease.


Sign in / Sign up

Export Citation Format

Share Document