scholarly journals Plasma-generated reactive oxygen and nitrogen species can lead to closure, locking and constriction of the Dionaea muscipula Ellis trap

2019 ◽  
Vol 16 (150) ◽  
pp. 20180713
Author(s):  
Alexander G. Volkov ◽  
Kunning G. Xu ◽  
Vladimir I. Kolobov

Reactive oxygen and nitrogen species (RONS) can influence plant signalling, physiology and development. We have previously observed that an argon plasma jet in atmospheric air can activate plant movements and morphing structures in the Venus flytrap and Mimosa pudica similar to stimulation of their mechanosensors in vivo. In this paper, we found that the Venus flytrap can be activated by plasma jets without direct contact of plasma with the lobe, midrib or cilia. The observed effects are attributed to RONS, which are generated by argon and helium plasma jets in atmospheric air. We also found that application of H 2 O 2 or HNO 3 aqueous solutions to the midrib induces propagation of action potentials and trap closing similar to plasma effects. Control experiments showed that UV light or neutral gas flow did not induce morphing or closing of the trap. The trap closing by plasma is thus likely to be associated with the production of hydrogen peroxide by the cold plasma jet in air. Understanding plasma control of plant morphing could help design adaptive structures and bioinspired intelligent materials.

2020 ◽  
Vol 48 (12) ◽  
pp. 4204-4214
Author(s):  
Jiayin Li ◽  
Fan Wu ◽  
Lanlan Nie ◽  
Xinpei Lu ◽  
Kostya Ostrikov

2016 ◽  
Vol 56 (1S) ◽  
pp. 01AC06 ◽  
Author(s):  
Taiki Ito ◽  
Giichiro Uchida ◽  
Atsushi Nakajima ◽  
Kosuke Takenaka ◽  
Yuichi Setsuhara

Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 227 ◽  
Author(s):  
Miguel Mateu-Sanz ◽  
Juan Tornín ◽  
Bénédicte Brulin ◽  
Anna Khlyustova ◽  
Maria-Pau Ginebra ◽  
...  

Osteosarcoma (OS) is the main primary bone cancer, presenting poor prognosis and difficult treatment. An innovative therapy may be found in cold plasmas, which show anti-cancer effects related to the generation of reactive oxygen and nitrogen species in liquids. In vitro models are based on the effects of plasma-treated culture media on cell cultures. However, effects of plasma-activated saline solutions with clinical application have not yet been explored in OS. The aim of this study is to obtain mechanistic insights on the action of plasma-activated Ringer’s saline (PAR) for OS therapy in cell and organotypic cultures. To that aim, cold atmospheric plasma jets were used to obtain PAR, which produced cytotoxic effects in human OS cells (SaOS-2, MG-63, and U2-OS), related to the increasing concentration of reactive oxygen and nitrogen species generated. Proof of selectivity was found in the sustained viability of hBM-MSCs with the same treatments. Organotypic cultures of murine OS confirmed the time-dependent cytotoxicity observed in 2D. Histological analysis showed a decrease in proliferating cells (lower Ki-67 expression). It is shown that the selectivity of PAR is highly dependent on the concentrations of reactive species, being the differential intracellular reactive oxygen species increase and DNA damage between OS cells and hBM-MSCs key mediators for cell apoptosis.


2020 ◽  
Vol 41 (10) ◽  
pp. 633-645
Author(s):  
Michalis G. Nikolaidis ◽  
Nikos V. Margaritelis ◽  
Antonios Matsakas

AbstractBiology is rich in claims that reactive oxygen and nitrogen species are involved in every biological process and disease. However, many quantitative aspects of redox biology remain elusive. The important quantitative parameters you need to address the feasibility of redox reactions in vivo are: rate of formation and consumption of a reactive oxygen and nitrogen species, half-life, diffusibility and membrane permeability. In the first part, we explain the basic chemical kinetics concepts and algebraic equations required to perform “street fighting” quantitative analysis. In the second part, we provide key numbers to help thinking about sizes, concentrations, rates and other important quantities that describe the major oxidants (superoxide, hydrogen peroxide, nitric oxide) and antioxidants (vitamin C, vitamin E, glutathione). In the third part, we present the quantitative effect of exercise on superoxide, hydrogen peroxide and nitric oxide concentration in mitochondria and whole muscle and calculate how much hydrogen peroxide concentration needs to increase to transduce signalling. By taking into consideration the quantitative aspects of redox biology we can: i) refine the broad understanding of this research area, ii) design better future studies and facilitate comparisons among studies, and iii) define more efficiently the “borders” between cellular signaling and stress.


2009 ◽  
Vol 47 (6) ◽  
pp. 760-766 ◽  
Author(s):  
Anders Kielland ◽  
Thomas Blom ◽  
Kutty Selva Nandakumar ◽  
Rikard Holmdahl ◽  
Rune Blomhoff ◽  
...  

2019 ◽  
Vol 9 (21) ◽  
pp. 4528 ◽  
Author(s):  
Irina Schweigert ◽  
Dmitry Zakrevsky ◽  
Pavel Gugin ◽  
Elena Yelak ◽  
Ekaterina Golubitskaya ◽  
...  

The cold atmospheric pressure plasma jet interaction with the bio-target is studied in the plasma experiment, 2D fluid model simulations, and with MTT and iCELLigence assays of the viability of cancer cells. It is shown, for the first time, that the use of the grounded substrate under the media with cells considerably amplifies the effect of plasma cancer cell treatment in vitro. Plasma devices with cylindrical and plane geometries generating cold atmospheric plasma jets are developed and tested. The sequence of the streamers which forms the plasma jet is initiated with a voltage of 2.5–6.5 kV applied with the frequency 40 kHz. We suggest using the grounded substrate under the bio-target during the plasma jet treatment of cancer cells. The analysis of the measured plasma spectra and comparison of OH-line intensity for different voltages and gas flow rates allows us to find a range of optimal plasma parameters for the enhanced OH generation. The time-dependent viability is measured for human cell lines, A431 (skin carcinoma), HEK 293 (kidney embryonic cells), and A549 (human lung adenocarcinoma cells) after the plasma jet treatment. The results with cell-based experiments (direct treatment) performed with various plasma jet parameters confirm the maximum efficiency of the treatment with the optimal plasma parameters.


2013 ◽  
Vol 125 (39) ◽  
pp. 10515-10519 ◽  
Author(s):  
Kanyi Pu ◽  
Adam J. Shuhendler ◽  
Jianghong Rao

Sign in / Sign up

Export Citation Format

Share Document