scholarly journals On the relationship between serial interval, infectiousness profile and generation time

2021 ◽  
Vol 18 (174) ◽  
pp. 20200756
Author(s):  
Sonja Lehtinen ◽  
Peter Ashcroft ◽  
Sebastian Bonhoeffer

The timing of transmission plays a key role in the dynamics and controllability of an epidemic. However, observing generation times—the time interval between the infection of an infector and an infectee in a transmission pair—requires data on infection times, which are generally unknown. The timing of symptom onset is more easily observed; generation times are therefore often estimated based on serial intervals—the time interval between symptom onset of an infector and an infectee. This estimation follows one of two approaches: (i) approximating the generation time distribution by the serial interval distribution or (ii) deriving the generation time distribution from the serial interval and incubation period—the time interval between infection and symptom onset in a single individual—distributions. These two approaches make different—and not always explicitly stated—assumptions about the relationship between infectiousness and symptoms, resulting in different generation time distributions with the same mean but unequal variances. Here, we clarify the assumptions that each approach makes and show that neither set of assumptions is plausible for most pathogens. However, the variances of the generation time distribution derived under each assumption can reasonably be considered as upper (approximation with serial interval) and lower (derivation from serial interval) bounds. Thus, we suggest a pragmatic solution is to use both approaches and treat these as edge cases in downstream analysis. We discuss the impact of the variance of the generation time distribution on the controllability of an epidemic through strategies based on contact tracing, and we show that underestimating this variance is likely to overestimate controllability.

Author(s):  
Sonja Lehtinen ◽  
Peter Ashcroft ◽  
Sebastian Bonhoeffer

The timing of transmission plays a key role in the dynamics and controllability of an epidemic. However, observing the distribution of generation times (time interval between the points of infection of an infector and infectee in a transmission pair) requires data on infection times, which are generally unknown. The timing of symptom onset is more easily observed; the generation time distribution is therefore often estimated based on the serial interval distribution (distribution of time intervals between symptom onset of an infector and an infectee). This estimation follows one of two approaches: i) approximating the generation time distribution by the serial interval distribution; or ii) deriving the generation time distribution from the serial interval and incubation period (time interval between infection and symptom onset in a single individual) distributions. These two approaches make different -- and not always explicitly stated -- assumptions about the relationship between infectiousness and symptoms, resulting in different generation time distributions with the same mean but unequal variances. Here, we clarify the assumptions that each approach makes and show that neither set of assumptions is plausible for most pathogens. However, the variances of the generation time distribution derived under each assumption can reasonably be considered as upper (approximation with serial interval) and lower (derivation from serial interval) bounds. Thus, we suggest a pragmatic solution is to use both approaches and treat these as edge cases in downstream analysis. We discuss the impact of the variance of the generation time distribution on the controllability of an epidemic through strategies based on contact tracing, and we show that underestimating this variance is likely to overestimate controllability.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009122
Author(s):  
Billy J. Gardner ◽  
A. Marm Kilpatrick

Simultaneously controlling COVID-19 epidemics and limiting economic and societal impacts presents a difficult challenge, especially with limited public health budgets. Testing, contact tracing, and isolating/quarantining is a key strategy that has been used to reduce transmission of SARS-CoV-2, the virus that causes COVID-19 and other pathogens. However, manual contact tracing is a time-consuming process and as case numbers increase a smaller fraction of cases’ contacts can be traced, leading to additional virus spread. Delays between symptom onset and being tested (and receiving results), and a low fraction of symptomatic cases being tested and traced can also reduce the impact of contact tracing on transmission. We examined the relationship between increasing cases and delays and the pathogen reproductive number Rt, and the implications for infection dynamics using deterministic and stochastic compartmental models of SARS-CoV-2. We found that Rt increased sigmoidally with the number of cases due to decreasing contact tracing efficacy. This relationship results in accelerating epidemics because Rt initially increases, rather than declines, as infections increase. Shifting contact tracers from locations with high and low case burdens relative to capacity to locations with intermediate case burdens maximizes their impact in reducing Rt (but minimizing total infections may be more complicated). Contact tracing efficacy decreased sharply with increasing delays between symptom onset and tracing and with lower fraction of symptomatic infections being tested. Finally, testing and tracing reductions in Rt can sometimes greatly delay epidemics due to the highly heterogeneous transmission dynamics of SARS-CoV-2. These results demonstrate the importance of having an expandable or mobile team of contact tracers that can be used to control surges in cases. They also highlight the synergistic value of high capacity, easy access testing and rapid turn-around of testing results, and outreach efforts to encourage symptomatic cases to be tested immediately after symptom onset.


Author(s):  
Billy J Gardner ◽  
A. Marm Kilpatrick

Simultaneously controlling COVID-19 epidemics and limiting economic and societal impacts presents a difficult challenge, especially with limited public health budgets. Testing, contact tracing, and isolating/quarantining is a key strategy that has been used to reduce transmission of SARS-CoV-2, the virus that causes COVID-19. However, manual contact tracing is a time-consuming process and as case numbers increase it takes longer to reach each cases' contacts, leading to additional virus spread. Delays between symptom onset and being tested (and receiving results), and a low fraction of symptomatic cases being tested and traced can also reduce the impact of contact tracing on transmission. We examined the relationship between cases and delays and the pathogen reproductive number Rt, and the implications for infection dynamics using a stochastic compartment model of SARS-CoV-2. We found that Rt increases sigmoidally with the number of cases due to decreasing contact tracing efficacy. This relationship results in accelerating epidemics because Rt increases, rather than declines, as infections increase. Shifting contact tracers from locations with high and low case burdens relative to capacity to locations with intermediate case burdens maximizes their impact in reducing Rt (but minimizing total infections is more complicated). Contact tracing efficacy also decreased with increasing delays between symptom onset and tracing and with lower fraction of symptomatic infections being tested. Finally, testing and tracing reductions in Rt can sometimes greatly delay epidemics due to the highly heterogeneous transmission dynamics of SARS-CoV-2. These results demonstrate the importance of having an expandable or mobile team of contact tracers that can be used to control surges in cases, and the value of easy access, high testing capacity and rapid turn-around of testing results, as well as outreach efforts to encourage symptomatic infections to be tested immediately after symptom onset.


Author(s):  
Miriam Casey ◽  
John Griffin ◽  
Conor G. McAloon ◽  
Andrew W. Byrne ◽  
Jamie M Madden ◽  
...  

AbstractObjectiveTo estimate the proportion of pre-symptomatic transmission of SARS-CoV-2 infection that can occur and timing of transmission relative to symptom onset.Setting/designSecondary analysis of international published data.Data sourcesMeta-analysis of COVID-19 incubation period and a rapid systematic review of serial interval and generation time, which are published separately.ParticipantsStudies were selected for analysis if they had transparent methods and data sources and they provided enough information to simulate full distributions of serial interval or generation time. Twenty-three estimates of serial interval and five of generation time from 17 publications were included.MethodsSimulations were generated of incubation period and of serial interval or generation time. From these, transmission times relative to symptom onset were calculated and the proportion of pre-symptomatic transmission was estimated.Outcome measuresTransmission time of SARS-CoV-2 relative to symptom onset and proportion of pre-symptomatic transmission.ResultsTransmission time ranged from a mean of 2.91 (95% CI: 3.18-2.64) days before symptom onset to 1.20 (0.86-1.55) days after symptom onset. Unweighted pooling of estimates of transmission time based on serial interval resulted in a mean of 0.60 days before symptom onset (3.01 days before to 1.81 days after). Proportion of pre-symptomatic transmission ranged from 42.8% (39.8%-45.9%) to 80.6% (78.1%-83.0%). The proportion of pre-symptomatic transmission from pooled estimates was 56.4% (34.9%-78.0%).ConclusionsWhilst contact rates between symptomatic infectious and susceptible people are likely to influence the proportion of pre-symptomatic transmission, there is substantial potential for pre-symptomatic transmission of SARS-CoV-2 in a range of different contexts. Our work suggests that transmission is most likely in the day before symptom onset whereas estimates suggesting most pre-symptomatic transmission highlighted mean transmission times almost three days before symptom onset. This highlights the need for rapid case detection, contact tracing and quarantine.Strengths and weaknesses of this studyWe estimate the extent and variation of pre-symptomatic transmission of SARS-CoV-2 infection across a range of contexts. This provides important information for development and targeting of control policies and for the parameterisation of transmission models.This is a secondary analysis using simulations based on published data, some of which is in pre-print form and not yet peer-reviewed. There is overlap in the contact tracing data that informed some of our source publications. We partially address this by summarising data at source location level as well as at study level.Populations where symptomatic people are rapidly isolated are likely have relatively more pre-symptomatic transmission. This should be borne in mind whilst interpreting our results, but does not affect our finding that there is substantial potential for pre-symptomatic transmission of SARS-CoV-2 infection.A strength of our approach is that it builds an understanding of pre-symptomatic transmission from a range of estimates in the literature, facilitates discussion for the drivers of variation between them, and highlights the consistent message that consideration of pre-symptomatic transmission is critical for COVID-19 control policy.


BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e041240
Author(s):  
Miriam Casey-Bryars ◽  
John Griffin ◽  
Conor McAloon ◽  
Andrew Byrne ◽  
Jamie Madden ◽  
...  

ObjectiveTo estimate the proportion of presymptomatic transmission of SARS-CoV-2 infection that can occur, and the timing of transmission relative to symptom onset.Setting/designSecondary analysis of international published data.Data sourcesMeta-analysis of COVID-19 incubation period and a rapid review of serial interval and generation time, which are published separately.ParticipantsData from China, the Islamic Republic of Iran, Italy, Republic of Korea, Singapore and Vietnam from December 2019 to May 2020.MethodsSimulations were generated of incubation period and of serial interval or generation time. From these, transmission times relative to symptom onset, and the proportion of presymptomatic transmission, were estimated.Outcome measuresTransmission time of SARS-CoV-2 relative to symptom onset and proportion of presymptomatic transmission.ResultsBased on 18 serial interval/generation time estimates from 15 papers, mean transmission time relative to symptom onset ranged from −2.6 (95% CI −3.0 to –2.1) days before infector symptom onset to 1.4 (95% CI 1.0 to 1.8) days after symptom onset. The proportion of presymptomatic transmission ranged from 45.9% (95% CI 42.9% to 49.0%) to 69.1% (95% CI 66.2% to 71.9%).ConclusionsThere is substantial potential for presymptomatic transmission of SARS-CoV-2 across a range of different contexts. This highlights the need for rapid case detection, contact tracing and quarantine. The transmission patterns that we report reflect the combination of biological infectiousness and transmission opportunities which vary according to context.


2022 ◽  
Author(s):  
Sam Abbott ◽  
Katharine Sherratt ◽  
Moritz Gerstung ◽  
Sebastian Funk

Background Early estimates from South Africa indicated that the Omicron COVID-19 variant may be both more transmissible and have greater immune escape than the previously dominant Delta variant. The rapid turnover of the latest epidemic wave in South Africa as well as initial evidence from contact tracing and household infection studies has prompted speculation that the generation time of the Omicron variant may be shorter in comparable settings than the generation time of the Delta variant. Methods We estimated daily growth rates for the Omicron and Delta variants in each UKHSA region from the 23rd of November to the 23rd of December 2021 using surveillance case counts by date of specimen and S-gene target failure status with an autoregressive model that allowed for time-varying differences in the transmission advantage of the Delta variant where the evidence supported this. By assuming a gamma distributed generation distribution we then estimated the generation time distribution and transmission advantage of the Omicron variant that would be required to explain this time varying advantage. We repeated this estimation process using two different prior estimates for the generation time of the Delta variant first based on household transmission and then based on its intrinsic generation time. Results Visualising our growth rate estimates provided initial evidence for a difference in generation time distributions. Assuming a generation time distribution for Delta with a mean of 2.5-4 days (90% credible interval) and a standard deviation of 1.9-3 days we estimated a shorter generation time distribution for Omicron with a mean of 1.5-3.2 days and a standard deviation of 1.3-4.6 days. This implied a transmission advantage for Omicron in this setting of 160%-210% compared to Delta. We found similar relative results using an estimate of the intrinsic generation time for Delta though all estimates increased in magnitude due to the longer assumed generation time. Conclusions We found that a reduction in the generation time of Omicron compared to Delta was able to explain the observed variation over time in the transmission advantage of the Omicron variant. However, this analysis cannot rule out the role of other factors such as differences in the populations the variants were mixing in, differences in immune escape between variants or bias due to using the test to test distribution as a proxy for the generation time distribution.


2021 ◽  
pp. 136787792199745
Author(s):  
Mark Andrejevic ◽  
Hugh Davies ◽  
Ruth DeSouza ◽  
Larissa Hjorth ◽  
Ingrid Richardson

In this article we explore preliminary findings from the study COVIDSafe and Beyond: Perceptions and Practices conducted in Australia in 2020. The study involved a survey followed by interviews, and aimed to capture the dynamic ways in which members of the Australian public perceive the impact of Covid practices – especially public health measures like the introduction of physical and social distancing, compulsory mask wearing, and contact tracing. In the rescripting of public space, different notions of formal and informal surveillance, along with different textures of mediated and social care, appeared. In this article, we explore perceptions around divergent forms of surveillance across social, technological, governmental modes, and the relationship of surveillance to care in our media and cultural practices. What does it mean to care for self and others during a pandemic? How does care get enacted in, and through, media interfaces and public interaction?


2020 ◽  
Author(s):  
Mohak Gupta ◽  
Giridara G Parameswaran ◽  
Manraj S Sra ◽  
Rishika Mohanta ◽  
Devarsh Patel ◽  
...  

Brief AbstractWe analysed SARS-CoV-2 surveillance and contact tracing data from Karnataka, India up to 21 July 2020. We estimated metrics of infectiousness and the tendency for superspreading (overdispersion), and evaluated potential determinants of infectiousness and symptomaticity in COVID-19 cases. Among 956 cases confirmed to be forward-traced, 8.7% of index cases had 14.4% of contacts but caused 80% of all secondary cases, suggesting significant heterogeneity in individual-level transmissibility of SARS-CoV-2 which could not be explained by the degree of heterogeneity in underlying number of contacts. Secondary attack rate was 3.6% among 16715 close contacts. Transmission was higher when index case was aged >18 years, or was symptomatic (adjusted risk ratio, aRR 3.63), or was lab-confirmed ≥4 days after symptom onset (aRR 3.01). Probability of symptomatic infection increased with age, and symptomatic infectors were 8.16 times more likely to generate symptomatic secondaries. This could potentially cause a snowballing effect on infectiousness and clinical severity across transmission generations; further studies are suggested to confirm this. Mean serial interval was 5.4 days. Adding backward contact tracing and targeting control measures to curb super-spreading may be prudent. Due to low symptomaticity and infectivity, interventions aimed at children might have a relatively small impact on reducing transmission.Structured AbstractBackgroundIndia has experienced the second largest outbreak of COVID-19 globally, yet there is a paucity of studies analysing contact tracing data in the region. Such studies can elucidate essential transmission metrics which can help optimize disease control policies.MethodsWe analysed contact tracing data collected under the Integrated Disease Surveillance Programme from Karnataka, India between 9 March and 21 July 2020. We estimated metrics of disease transmission including the reproduction number (R), overdispersion (k), secondary attack rate (SAR), and serial interval. R and k were jointly estimated using a Bayesian Markov Chain Monte Carlo approach. We evaluated the effect of age and other factors on the risk of transmitting the infection, probability of asymptomatic infection, and mortality due to COVID-19.FindingsUp to 21 July, we found 111 index cases that crossed the super-spreading threshold of ≥8 secondary cases. R and k were most reliably estimated at R 0.75 (95% CI, 0.62-0.91) and k 0.12 (0.11-0.15) for confirmed traced cases (n=956); and R 0.91 (0.72-1.15) and k 0.22 (0.17-0.27) from the three largest clusters (n=394). Among 956 confirmed traced cases, 8.7% of index cases had 14.4% of contacts but caused 80% of all secondary cases. Among 16715 contacts, overall SAR was 3.6% (3.4-3.9) and symptomatic cases were more infectious than asymptomatic cases (SAR 7.7% vs 2.0%; aRR 3.63 [3.04-4.34]). As compared to infectors aged 19-44 years, children were less infectious (aRR 0.21 [0.07-0.66] for 0-5 years and 0.47 [0.32-0.68] for 6-18 years). Infectors who were confirmed ≥4 days after symptom onset were associated with higher infectiousness (aRR 3.01 [2.11-4.31]). Probability of symptomatic infection increased with age, and symptomatic infectors were 8.16 (3.29-20.24) times more likely to generate symptomatic secondaries. Serial interval had a mean of 5.4 (4.4-6.4) days with a Weibull distribution. Overall case fatality rate was 2.5% (2.4-2.7) which increased with age.ConclusionWe found significant heterogeneity in the individual-level transmissibility of SARS-CoV-2 which could not be explained by the degree of heterogeneity in the underlying number of contacts. To strengthen contact tracing in over-dispersed outbreaks, testing and tracing delays should be minimised, retrospective contact tracing should be considered, and contact tracing performance metrics should be utilised. Targeted measures to reduce potential superspreading events should be implemented. Interventions aimed at children might have a relatively small impact on reducing SARS-CoV-2 transmission owing to their low symptomaticity and infectivity. There is some evidence that symptomatic cases produce secondary cases that are more likely to be symptomatic themselves which may potentially cause a snowballing effect on infectiousness and clinical severity across transmission generations; further studies are needed to confirm this finding.FundingGiridhara R Babu is funded by an Intermediate Fellowship by the Wellcome Trust DBT India Alliance (Clinical and Public Health Research Fellowship); grant number: IA/CPHI/14/1/501499.


2021 ◽  
Vol 17 (2) ◽  
pp. e1008713 ◽  
Author(s):  
Joshua Havumaki ◽  
Ted Cohen ◽  
Chengwei Zhai ◽  
Joel C. Miller ◽  
Seth D. Guikema ◽  
...  

There is an emerging consensus that achieving global tuberculosis control targets will require more proactive case finding approaches than are currently used in high-incidence settings. Household contact tracing (HHCT), for which households of newly diagnosed cases are actively screened for additional infected individuals is a potentially efficient approach to finding new cases of tuberculosis, however randomized trials assessing the population-level effects of such interventions in settings with sustained community transmission have shown mixed results. One potential explanation for this is that household transmission is responsible for a variable proportion of population-level tuberculosis burden between settings. For example, transmission is more likely to occur in households in settings with a lower tuberculosis burden and where individuals mix preferentially in local areas, compared with settings with higher disease burden and more dispersed mixing. To better understand the relationship between endemic incidence levels, social mixing, and the impact of HHCT, we developed a spatially explicit model of coupled household and community transmission. We found that the impact of HHCT was robust across settings of varied incidence and community contact patterns. In contrast, we found that the effects of community contact tracing interventions were sensitive to community contact patterns. Our results suggest that the protective benefits of HHCT are robust and the benefits of this intervention are likely to be maintained across epidemiological settings.


Author(s):  
Peter Ashcroft ◽  
Sonja Lehtinen ◽  
Daniel C. Angst ◽  
Nicola Low ◽  
Sebastian Bonhoeffer

AbstractThe numbers of confirmed cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are increasing in many places. Consequently, the number of individuals placed into quarantine is increasing too. The large number of individuals in quarantine has high societal and economical costs. There is ongoing debate about the duration of quarantine, particularly since the fraction of individuals in quarantine who eventually test positive is perceived as being low. We present a mathematical model that uses empirically determined distributions of incubation period, infectivity, and generation time to quantify how the duration of quarantine affects transmission. We use this model to examine two quarantine scenarios: traced contacts of confirmed SARS-CoV-2 cases and returning travellers. We quantify the impact of shortening the quarantine duration in terms of prevented transmission and the ratio of prevented transmission to days spent in quarantine. We also consider the impact of i) test-and-release strategies; ii) reinforced hygiene measures upon release after a negative test; iii) the development of symptoms during quarantine; iv) the relationship between quarantine duration and adherence; and v) the fraction of individuals in quarantine that are infected. When considering the ratio of prevented transmission to days spent in quarantine, we find that the diminishing impact of longer quarantine on transmission prevention may support a quarantine duration below 10 days. This ratio can be increased by implementing a test-and-release strategy, and this can be even further strengthened by reinforced hygiene measures post-release. We also find that unless a test-and-release strategy is considered, the fraction of individuals in quarantine that are infected does not affect the optimal duration of quarantine under our utility metric. Ultimately, we show that there are quarantine strategies based on a test-and-release protocol that, from an epidemiological viewpoint, perform almost as well as the standard 10 day quarantine, but with a lower cost in terms of person days spent in quarantine. This applies to both travellers and contacts, but the specifics depend on the context.


Sign in / Sign up

Export Citation Format

Share Document