scholarly journals A data driven agent-based model that recommends non-pharmaceutical interventions to suppress Coronavirus disease 2019 resurgence in megacities

2021 ◽  
Vol 18 (181) ◽  
pp. 20210112
Author(s):  
Ling Yin ◽  
Hao Zhang ◽  
Yuan Li ◽  
Kang Liu ◽  
Tianmu Chen ◽  
...  

Before herd immunity against Coronavirus disease 2019 (COVID-19) is achieved by mass vaccination, science-based guidelines for non-pharmaceutical interventions are urgently needed to reopen megacities. This study integrated massive mobile phone tracking records, census data and building characteristics into a spatially explicit agent-based model to simulate COVID-19 spread among 11.2 million individuals living in Shenzhen City, China. After validation by local epidemiological observations, the model was used to assess the probability of COVID-19 resurgence if sporadic cases occurred in a fully reopened city. Combined scenarios of three critical non-pharmaceutical interventions (contact tracing, mask wearing and prompt testing) were assessed at various levels of public compliance. Our results show a greater than 50% chance of disease resurgence if the city reopened without contact tracing. However, tracing household contacts, in combination with mandatory mask use and prompt testing, could suppress the probability of resurgence under 5% within four weeks. If household contact tracing could be expanded to work/class group members, the COVID resurgence could be avoided if 80% of the population wear facemasks and 40% comply with prompt testing. Our assessment, including modelling for different scenarios, helps public health practitioners tailor interventions within Shenzhen City and other world megacities under a variety of suppression timelines, risk tolerance, healthcare capacity and public compliance.

2021 ◽  
Author(s):  
James Thompson ◽  
Stephen Wattam

AbstractCoronavirus disease 2019 (COVID-19) is an infectious disease of humans caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first case was identified in China in December 2019 the disease has spread worldwide, leading to an ongoing pandemic. In this article, we present a detailed agent-based model of COVID-19 in Luxembourg, and use it to estimate the impact, on cases and deaths, of interventions including testing, contact tracing, lockdown, curfew and vaccination.Our model is based on collation, with agents performing activities and moving between locations accordingly. The model is highly heterogeneous, featuring spatial clustering, over 2000 behavioural types and a 10 minute time resolution. The model is validated against COVID-19 clinical monitoring data collected in Luxembourg in 2020.Our model predicts far fewer cases and deaths than the equivalent equation-based SEIR model. In particular, with R0 = 2.45, the SEIR model infects 87% of the resident population while our agent-based model results, on average, in only around 23% of the resident population infected. Our simulations suggest that testing and contract tracing reduce cases substantially, but are much less effective at reducing deaths. Lockdowns appear very effective although costly, while the impact of an 11pm-6am curfew is relatively small. When vaccinating against a future outbreak, our results suggest that herd immunity can be achieved at relatively low levels, with substantial levels of protection achieved with only 30% of the population immune. When vaccinating in midst of an outbreak, the challenge is more difficult. In this context, we investigate the impact of vaccine efficacy, capacity, hesitancy and strategy.We conclude that, short of a permanent lockdown, vaccination is by far the most effective way to suppress and ultimately control the spread of COVID-19.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261330
Author(s):  
James Thompson ◽  
Stephen Wattam

Coronavirus disease 2019 (COVID-19) is an infectious disease of humans caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first case was identified in China in December 2019 the disease has spread worldwide, leading to an ongoing pandemic. In this article, we present an agent-based model of COVID-19 in Luxembourg, and use it to estimate the impact, on cases and deaths, of interventions including testing, contact tracing, lockdown, curfew and vaccination. Our model is based on collation, with agents performing activities and moving between locations accordingly. The model is highly heterogeneous, featuring spatial clustering, over 2000 behavioural types and a 10 minute time resolution. The model is validated against COVID-19 clinical monitoring data collected in Luxembourg in 2020. Our model predicts far fewer cases and deaths than the equivalent equation-based SEIR model. In particular, with R0 = 2.45, the SEIR model infects 87% of the resident population while our agent-based model infects only around 23% of the resident population. Our simulations suggest that testing and contract tracing reduce cases substantially, but are less effective at reducing deaths. Lockdowns are very effective although costly, while the impact of an 11pm-6am curfew is relatively small. When vaccinating against a future outbreak, our results suggest that herd immunity can be achieved at relatively low coverage, with substantial levels of protection achieved with only 30% of the population fully immune. When vaccinating in the midst of an outbreak, the challenge is more difficult. In this context, we investigate the impact of vaccine efficacy, capacity, hesitancy and strategy. We conclude that, short of a permanent lockdown, vaccination is by far the most effective way to suppress and ultimately control the spread of COVID-19.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jonatan Almagor ◽  
Stefano Picascia

AbstractA contact-tracing strategy has been deemed necessary to contain the spread of COVID-19 following the relaxation of lockdown measures. Using an agent-based model, we explore one of the technology-based strategies proposed, a contact-tracing smartphone app. The model simulates the spread of COVID-19 in a population of agents on an urban scale. Agents are heterogeneous in their characteristics and are linked in a multi-layered network representing the social structure—including households, friendships, employment and schools. We explore the interplay of various adoption rates of the contact-tracing app, different levels of testing capacity, and behavioural factors to assess the impact on the epidemic. Results suggest that a contact tracing app can contribute substantially to reducing infection rates in the population when accompanied by a sufficient testing capacity or when the testing policy prioritises symptomatic cases. As user rate increases, prevalence of infection decreases. With that, when symptomatic cases are not prioritised for testing, a high rate of app users can generate an extensive increase in the demand for testing, which, if not met with adequate supply, may render the app counterproductive. This points to the crucial role of an efficient testing policy and the necessity to upscale testing capacity.


2021 ◽  
Author(s):  
Manfred Eissler

AbstractThe spread of an infection is simulated with a stochastic agent-based model. In a certain range of R0 values, the infection either rapidly comes to halt or a large proportion of the population is infected until herd immunity is achieved. Which of these two possibilities actually occurs is random. The probability of each case is determined ‘quasi-empirically’. This stochastic phenomenon may explain unexpected infection trajectories.


2020 ◽  
Author(s):  
Junjiang Li ◽  
Philippe J. Giabbanelli

AbstractThere is a range of public health tools and interventions to address the global pandemic of COVID-19. Although it is essential for public health efforts to comprehensively identify which interventions have the largest impact on preventing new cases, most of the modeling studies that support such decision-making efforts have only considered a very small set of interventions. In addition, previous studies predominantly considered interventions as independent or examined a single scenario in which every possible intervention was applied. Reality has been more nuanced, as a subset of all possible interventions may be in effect for a given time period, in a given place. In this paper, we use cloud-based simulations and a previously published Agent-Based Model of COVID-19 (Covasim) to measure the individual and interacting contribution of interventions on reducing new infections in the US over 6 months. Simulated interventions include face masks, working remotely, stay-at-home orders, testing, contact tracing, and quarantining. Through a factorial design of experiments, we find that mask wearing together with transitioning to remote work/schooling has the largest impact. Having sufficient capacity to immediately and effectively perform contact tracing has a smaller contribution, primarily via interacting effects.


2020 ◽  
Author(s):  
Ernie Chang ◽  
Kenneth A. Moselle ◽  
Ashlin Richardson

ABSTRACTThe agent-based model CovidSIMVL (github.com/ecsendmail/MultiverseContagion) is employed in this paper to delineate different network structures of transmission chains in simulated COVID-19 epidemics, where initial parameters are set to approximate spread from a single transmission source, and R0ranges between 1.5 and 2.5.The resulting Transmission Trees are characterized by breadth, depth and generations needed to reach a target of 50% infected from a starting population of 100, or self-extinction prior to reaching that target. Metrics reflecting efficiency of an epidemic relate closely to topology of the trees.It can be shown that the notion of superspreading individuals may be a statistical artefact of Transmission Tree growth, while superspreader events can be readily simulated with appropriate parameter settings. The potential use of contact tracing data to identify chain length and shared paths is explored as a measure of epidemic progression. This characterization of epidemics in terms of topological characteristics of Transmission Trees may complement equation-based models that work from rates of infection. By constructing measures of efficiency of spread based on Transmission Tree topology and distribution, rather than rates of infection over time, the agent-based approach may provide a method to characterize and project risks associated with collections of transmission events, most notably at relatively early epidemic stages, when rates are low and equation-based approaches are challenged in their capacity to describe or predict.MOTIVATION – MODELS KEYED TO CONTEMPLATED DECISIONSOutcomes are altered by changing the processes that determine them. If we wish to alter contagion-based spread of infection as reflected in curves that characterize changes in transmission rates over time, we must intervene at the level of the processes that are directly involved in preventing viral spread. If we are going to employ models to evaluate different candidate arrays of localized preventive policies, those models must be posed at the same level of granularity as the entities (people enacting processes) to which preventive measures will be applied. As well, the models must be able to represent the transmission-relevant dynamics of the systems to which policies could be applied. Further, the parameters that govern dynamics within the models must embody the actions that are prescribed/proscribed by the preventive measures that are contemplated. If all of those conditions are met, then at a formal or structural level, the models are conformant with the provisions of the Law of Requisite Variety1 or the restated version of that law – the good regulator theorem.2On a more logistical or practical level, the models must yield summary measures that are responsive to changes in key parameters, highlight the dynamics, quantify outcomes associated with the dynamics, and communicate that information in a form that can be understood correctly by parties who are adjudicating on policy options.If the models meet formal/structural requirements regarding requisite variety, and the parameters have a plausible interpretation in relationship to real-world situations, and the metrics do not overly-distort the data contents that they summarize, then the models provide information that is directly relevant to decision-making processes. Models that meet these requirements will minimize the gap that separates models from decisions, a gap that will otherwise be filled by considerations other than the data used to create the models (for equation-based models) or the data generated by the simulations.In this work, we present an agent-based model that targets information requirements of decision-makers who are setting policy at a local level, or translate population level directives to local entities and operations. We employ an agent-based modeling approach, which enables us to generate simulations that respond directly to the requirements of the good regulator theorem. Transmission events take place within a spatio-temporal frame of reference in this model, and rates are not conditioned by a reproduction rate (R0) that is specified a priori. Events are a function of movement and proximity. To summarize dynamics and associated outcomes of simulated epidemics, we employ metrics reflecting topological structure of transmission chains, and distributions of those structures. These measures point directly to dynamic features of simulated outbreaks, they operationalize the “efficiency” construct, and they are responsive to changes in parameters that govern dynamics of the simulations.


2020 ◽  
Vol 170 ◽  
pp. 273-280
Author(s):  
Samuel Felbermair ◽  
Florian Lammer ◽  
Eva Trausinger-Binder ◽  
Cornelia Hebenstreit

2021 ◽  
Author(s):  
Ludek Berec ◽  
Tomas Diviak ◽  
Ales Kubena ◽  
Rene Levinsky ◽  
Roman Neruda ◽  
...  

This report presents a technical description of our agent-based epidemic model of a particular middle-sized municipality. We have developed a realistic model with 56 thousand inhabitants and 2.7 million of social contacts. These form a multi-layer social network that serves as a base of our epidemic simulation. The disease is modeled by our extended SEIR model with parameters fitted to real epidemics data for Czech Republic. The model is able to simulate a whole range of non-pharmaceutical interventions on individual level, such as protective measures and physical distancing, testing, contact tracing, isolation and quarantine. The effect of government-issued measures such as contact restrictions in different environments (schools, restaurants, vendors, etc.) can also be simulated. The model is implemented in Python and is available as open source at: www.github.com/epicity-cz/model-m/releases


Sign in / Sign up

Export Citation Format

Share Document