scholarly journals The multifaceted role of lemur tyrosine kinase 3 in health and disease

Open Biology ◽  
2021 ◽  
Vol 11 (9) ◽  
Author(s):  
Angeliki Ditsiou ◽  
Teresa Gagliano ◽  
Mark Samuels ◽  
Viviana Vella ◽  
Christos Tolias ◽  
...  

In the last decade, LMTK3 (lemur tyrosine kinase 3) has emerged as an important player in breast cancer, contributing to the advancement of disease and the acquisition of resistance to therapy through a strikingly complex set of mechanisms. Although the knowledge of its physiological function is largely limited to receptor trafficking in neurons, there is mounting evidence that LMTK3 promotes oncogenesis in a wide variety of cancers. Recent studies have broadened our understanding of LMTK3 and demonstrated its importance in numerous signalling pathways, culminating in the identification of a potent and selective LMTK3 inhibitor. Here, we review the roles of LMTK3 in health and disease and discuss how this research may be used to develop novel therapeutics to advance cancer treatment.

2021 ◽  
pp. 1-10
Author(s):  
Bader Alshehri

Breast cancer being the most malignant and lethal disease persistent among women globally. Immunotherapy as a new treatment modality has emerged in understanding the loopholes in the treatment of breast cancer which is mainly attributed to the potential of tumor cells to evade and survive the immune response by developing various strategies. Therefore, improved understanding of the immune evasion by cancer cells and the monoclonal antibodies against PD- and PD-L1 can help us in the diagnosis of this malignancy. Here in this article, I have highlighted that in addition to focusing on other strategies for breast cancer treatment, the involvement of immune system in breast cancer is vital for the understanding of this malignancy. Further, the complete involvement of immune system in the relapse or recurrence of the breast tumor and have also highlighted the role of vaccines, PD-1 and CTLA-4 with the recent advances in the field. Moreover, in addition to the application of immunotherapy as a sole therapy, combinations of immunotherapy with various strategies like targeting it with MEK inhibitors, Vaccines, chemotherapy and PARP inhibitor has shown to have significant benefits is also discussed in this article.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Sanchez ◽  
Maria D. Ganfornina

Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.


2019 ◽  
Vol 9 (8) ◽  
pp. 882-894
Author(s):  
Jahnavi Rama Madhuri Kamaraju ◽  
Raghavendra Rao Kanchi ◽  
Rajesh Kumar Borra ◽  
Padma Suvarna Reniguntla ◽  
Satyanarayana Rentala

Nanophosphor compounds with both diagnostic and therapeutic functions are potential for cancer diagnosis and treatment. Lanthanide complexes play a crucial role in cancer diagnosis and therapy. Gadolinium-complexes are commonly used as magnetic resonance imaging (MRI) contrast agents for cancer imaging. The role of a lanthanide, Ytterbium (Yb) in cancer treatment is not unknown. The present work focuses on finding the role of Yb when doped into Gadolinium complexes in cancer treatment. Our results demonstrate that Yb doped Gadolinium molybdate coated with biocompatible silica, effectively inhibited the viability of breast cancer cells after 24 and 48 h of treatment in in vitro, and in contrast the nanophosphor compounds did not affect the viability of healthy cells. Yb doped Gadolinium molybdate also up-regulated apoptotic genes in breast cancer cells. Hence we propose that Yb doped Gadolinium molybdate is a promising theranostic compound. To the best of our knowledge, this is the first report showing anti-cancer nature of Ytterbium-doped into Gadolinium nanophosphors.


2009 ◽  
Vol 7 (5) ◽  
pp. 634-644 ◽  
Author(s):  
Xiaoying Zhang ◽  
Ulka Shrikhande ◽  
Bethany M. Alicie ◽  
Qing Zhou ◽  
Robert L. Geahlen

Sign in / Sign up

Export Citation Format

Share Document