scholarly journals Physiological tremor reveals how thixotropy adapts skeletal muscle for posture and movement

2016 ◽  
Vol 3 (5) ◽  
pp. 160065 ◽  
Author(s):  
Carlijn A. Vernooij ◽  
Raymond F. Reynolds ◽  
Martin Lakie

People and animals can move freely, but they must also be able to stay still. How do skeletal muscles economically produce both movement and posture? Humans are well known to have motor units with relatively homogeneous mechanical properties. Thixotropic muscle properties can provide a solution by providing a temporary stiffening of all skeletal muscles in postural conditions. This stiffening is alleviated almost instantly when muscles start to move. In this paper, we probe this behaviour. We monitor both the neural input to a muscle, measured here as extensor muscle electromyography (EMG), and its output, measured as tremor (finger acceleration). Both signals were analysed continuously as the subject made smooth transitions between posture and movement. The results showed that there were marked changes in tremor which systematically increased in size and decreased in frequency as the subject moved faster. By contrast, the EMG changed little and reflected muscle force requirement rather than movement speed. The altered tremor reflects naturally occurring thixotropic changes in muscle behaviour. Our results suggest that physiological tremor provides useful and hitherto unrecognized insights into skeletal muscle's role in posture and movement.

Motor Control ◽  
1999 ◽  
Vol 3 (1) ◽  
pp. 9-11 ◽  
Author(s):  
Stan C.A.M. Gielen

EMG recordings are frequently used to obtain a better understanding in the coordination of movements. However, EMG activity is made up by the weighted summation of activity of many motor units with different contractile properties. Recent studies have revealed that different motor units contribute to muscle force in different motor tasks. The flexible recruitment of motor units with various contractile properties allows a flexible tuning of muscle properties, but also complicates the interpretation of EMG activity.


2003 ◽  
Vol 10 (1-2) ◽  
pp. 69-76 ◽  
Author(s):  
D. Kernell

A brief survey is given of how motoneurons and motor units are used for the gradation Of muscle force during motor behavior. Basic properties of motoneurons and muscle fibers, including major kinds of functional specialization along the axis of ‘fast’ vs. ‘slow’, are reviewed. The principles underlying the rate and recruitment gradation of force are described, stressing that the properties of motoneurons and muscle fibers are matched to automate important aspects of the gradation procedure. Recent investigations concerning synaptically evoked changes in the discharge properties of motoneurons receive special attention, including ‘plateau’ currents and, under appropriate conditions, self-sustained ‘plateau’ discharges.


2020 ◽  
Vol 20 (19) ◽  
pp. 2019-2035
Author(s):  
Esmaeil Sheikh Ahmadi ◽  
Amir Tajbakhsh ◽  
Milad Iranshahy ◽  
Javad Asili ◽  
Nadine Kretschmer ◽  
...  

Naturally occurring naphthoquinones (NQs) comprising highly reactive small molecules are the subject of increasing attention due to their promising biological activities such as antioxidant, antimicrobial, apoptosis-inducing activities, and especially anticancer activity. Lapachol, lapachone, and napabucasin belong to the NQs and are in phase II clinical trials for the treatment of many cancers. This review aims to provide a comprehensive and updated overview on the biological activities of several new NQs isolated from different species of plants reported from January 2013 to January 2020, their potential therapeutic applications and their clinical significance.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 656
Author(s):  
Giulia Foggi ◽  
Francesca Ciucci ◽  
Maria Conte ◽  
Laura Casarosa ◽  
Andrea Serra ◽  
...  

This study aimed to characterise the fibre composition of Triceps brachii (TB) and Semimembranosus (SM) muscles from 20 Maremmana (MA) and 20 Aubrac (AU) steers, and the effect of grazing activity in comparison with feedlot system. The histochemical method was performed with the m-ATPase method with an acid pre-incubation, thus allowing to distinguish type I, IIA, and IIB fibres. Additionally, on total RNA extracted from SM muscle, the expressions of atp1a1, mt-atp6, and capn1 genes were evaluated, in order to find potential associations with muscle fibre histochemical characteristics. In SM muscle, the MA steers had the greater frequency of oxidative fibres (type I and IIA) and the higher atp1a1 expression, in comparison to AU steers. Conversely, AU steers had a greater frequency of type IIB fibres, and the higher capn1 expression. A similar histochemical pattern was observed in TB muscle. The grazing activity was probably insufficient to determine differences both for fibre proportion and size, and gene expressions, except for mt-atp6 expression that was surprisingly highest in feedlot MA in comparison to other steers. These findings further the knowledge of muscle properties belonging to these breeds, and the effect of voluntary physical activity since few studies were available in this regard.


1978 ◽  
Vol 41 (3) ◽  
pp. 557-571 ◽  
Author(s):  
J. H. Allum ◽  
V. Dietz ◽  
H. J. Freund

1. Tremor force was recorded during stationary isometric contractions of intrinsic hand muscles of normal subjects. Subjects maintained a steady force level between their thumb and forefinger for 30 s. The force level varied from weak (0.2 kg) to strong contractions (7 kg). These experimental conditions were the same as those in two preceding studies, where single motor-unit activity (14) and the correlation between the discharges of two simultaneously recorded motor units and physiological tremor (11) have been investigated. 2. Two alterations of the power spectra were observed at successively stronger contractions: increase of tremor amplitude and changes in the shape of the power spectrum. At all force levels, the power spectra of tremor force show the well-known decay of tremor amplitude from the lower to the higher frequencies with a local peak at 6--10 Hz. This peak does not show a significant change with respect to frequency when the force level is varied. It is shifted toward lower frequencies in a pathological condition (Parkinsonism) where the recruitment firing rates of the motor units are significantly lower than in the normal. 3. Higher frequencies (greater than 20 Hz) are barely present in the power spectrum during the very weak contractions. They become significant as the contractions become stronger. 4. The steep decay of the power spectrum toward higher frequencies has a similar slope (--43 dB/decade) as the reduction in amplitude of the unfused part of the muscle contractions with increasing stimulus rates (--38 dB/decade). The cutoff of the power spectrum above 25 Hz parallels the achievement of total fusion of muscle twitches above this rate. 5. The results are consistent with the hypothesis that the power spectrum over the range of 6--25 Hz is mainly caused by the unfused parts of the twitch contractions of motor units firing between recruitment (6--8/s) and total fusion of the twitches (25--30/s). The decline of the power spectrum toward higher frequencies can be explained by mechanical damping, which results from increasing fusion of the twitch contractions. The low-frequency part of the power spectrum is assumed to be the result of the slow force deviations produced by changes in the net output of the motoneuron pool. 6. These assumptions were supported by additional animal experiments where the number and rate of force-producing elements could be controlled. Bundles of ventral root filaments innervating cat soleus and gastrocnemius muscles were stimulated synchronously and asynchronously at a number of different rates. The force output of the strain gauge was recorded, filtered, and analyzed in the same way as the human force records. 7. Stimualtion of one nerve bundle at one fixed frequency led to a sharp peak in the power spectrum at that frequency plus peaks of decreasing height representing the harmonics of the stimulation frequency. The height of the peaks decreased at --37 dB/decade. 8...


2019 ◽  
Vol 34 (2) ◽  
pp. 141-152 ◽  
Author(s):  
Wazir Muhammad ◽  
Matiullah ◽  
Asad Ullah ◽  
Sajjad Tahir ◽  
Fawad Ullah ◽  
...  

Abstract In our environment, various naturally occurring radionuclides are present (both underground and overground) in several places, which results in lifelong human exposure. The radiation dose received by human beings from the radiation emitted by these naturally occurring radionuclides is approximately 87%. Exposure to radiation poses radiological health hazards. To assess the human health hazards from radiation, the concentration of these naturally occurring radionuclides are measured in soil (used for cultivation), building materials (soil, bricks, sand, marble, etc.), water and dietary items, worldwide. The available literature revealed that numerous studies related to the subject have been carried out in Pakistan. Most of these studies measured the radioactivity concentrations of primordial [uranium (238U), thorium (232Th), radium (226Ra) and potassium (40K)] and anthropogenic [cesium (137Cs)] radionuclide in soil samples (used for cultivation), fertilizers, building materials (i.e. bricks, rocks, sand, soil, marble, etc.), as well as water and dietary items, using a sodium iodide detector or high purity germanium. An effort was made in 2008 to compile these studies as a review article. However, since then, considerable studies have been undertaken and reported in the literature. Therefore, the main objective of the present article is to provide a countrywide baseline data on radionuclide levels, by overviewing and compiling the relevant studies carried out in Pakistan.


1996 ◽  
Vol 75 (1) ◽  
pp. 51-59 ◽  
Author(s):  
K. E. Tansey ◽  
A. K. Yee ◽  
B. R. Botterman

1. The aim of this study was to examine the extent of muscle-unit force modulation due to motoneuron firing-rate variation in type-identified motor units of the cat medial gastrocnemius (MG) muscle, and to investigate the contribution of muscle-unit force modulation to whole-muscle force regulation. The motoneuron discharge patterns recorded from 8 pairs of motor units during 12 smoothly graded muscle contractions evoked by stimulation of the mesencephalic locomotor region (MLR) were used to reactivate those units in isolation to estimate what their force profiles would have been like during the evoked whole-muscle contractions. 2. For most motor units, muscle-unit force modulation was similar to motoneuron firing-rate modulation, in that muscle-unit force increased over a limited range (120-600 g) of increasing whole-muscle tension and was then maintained at a near maximal (> 70%) output level as muscle force continued to rise. Most muscle units also decreased their force outputs over a slightly larger range of declining whole-muscle force before relaxing. This second finding was best explained by the counterclockwise hysteresis recorded in the motor units' frequency-tension (f-t) relationships. 3. In those instances when whole-muscle force fluctuated just above the recruitment threshold of a motor unit, a substantial percentage (10-25%) of the change in whole-muscle force could be accounted for by force modulation in that motor unit alone. This finding suggested that few motor units in the pool were simultaneously simultaneously undergoing force modulation. To evaluate this possibility, the extent of parallel muscle-unit force modulation within the 8 pairs of simultaneously active motor units was evaluated. As with parallel motoneuron firing-rate modulation, the extent of parallel muscle-unit force modulation was limited to unit pairs of the same physiological type and recruitment threshold. In several instances, pairs of motor units displayed parallel motoneuron firing-rate modulation but did not show parallel muscle-unit force modulation because of the nature of the motor units' f-t relationships. 4. The limited extent of parallel muscle-unit force modulation seen in these experiments implies that the major strategy for force modulation in the cat MG muscle, involving contractions estimated to reach 30-40% of maximum, may be motor-unit recruitment rather than motor-unit firing-rate variation with resulting force modulation. Given, however, that the majority of motor units are already recruited at these output levels (< 40%), it is proposed that motor-unit firing-rate variation with resulting force modulation may take over as the major muscle force modulating strategy at higher output levels.


1982 ◽  
Vol 47 (5) ◽  
pp. 797-809 ◽  
Author(s):  
P. J. Cordo ◽  
W. Z. Rymer

1. Subdivided portions of the cut ventral root innervation of the soleus muscle were electrically stimulated in 14 anesthetized cats. The stimulus trains imposed on these nerves simulated the recruitment and rate-modulation patterns of single motor units recorded during stretch-reflex responses in decerebrate preparations. Each activation pattern was evaluated for its ability to prevent muscle yield. 2. Three basic stimulus patterns, recruitment, step increases in stimulus rate, and doublets were imposed during the course of ramp stretches applied over a wide range of velocities. The effect of each stimulus pattern on muscle force was compared to the force output recorded without stretch-related recruitment or rate modulation. 3. Motor-unit recruitment was found to be most effective in preventing yield during muscle stretch. Newly recruited motor units showed no evidence of yielding for some 250 ms following activation, at which time muscle stiffness declined slightly. This time-dependent resistance to yield was observed regardless of whether the onset of the neural stimulus closely preceded or followed stretch onset. 4. Step increases in stimulus rate arising shortly after stretch onset did not prevent the occurrence of yield at most stretch velocities, but did augment muscle stiffness later in the stretch. Doublets in the stimulus train were found to augment muscle stiffness only when they occurred in newly recruited motor units. 5. These results suggest that at low or moderate initial forces, the prevention of yield in lengthening, reflexively intact muscle results primarily from rapid motor-unit recruitment. To a lesser extent, the spring-like character of the stretch-reflex response also derives from step increases in firing rate of motor units active before stretch onset and doublets in units recruited during the course of stretch. Smooth rate increases appear to augment muscle force later in the course of the reflex response.


1995 ◽  
Vol 268 (2) ◽  
pp. C527-C534 ◽  
Author(s):  
G. A. Unguez ◽  
R. R. Roy ◽  
D. J. Pierotti ◽  
S. Bodine-Fowler ◽  
V. R. Edgerton

To examine the influence of a motoneuron in maintaining the phenotype of the muscle fibers it innervates, myosin heavy chain (MHC) expression, succinate dehydrogenase (SDH) activity, and cross-sectional area (CSA) of a sample of fibers belonging to a motor unit were studied in the cat tibialis anterior 6 mo after the nerve branches innervating the anterior compartment were cut and sutured near the point of entry into the muscle. The mean, range, and coefficient of variation for the SDH activity and the CSA for both motor unit and non-motor unit fibers for each MHC profile and from each control and each self-reinnervated muscle studied was obtained. Eight motor units were isolated from self-reinnervated muscles using standard ventral root filament testing techniques, tested physiologically, and compared with four motor units from control muscles. Motor units from self-reinnervated muscles could be classified into the same physiological types as those found in control tibialis anterior muscles. The muscle fibers belonging to a unit were depleted of glycogen via repetitive stimulation and identified in periodic acid-Schiff-stained frozen sections. Whereas muscle fibers in control units expressed similar MHCs, each motor unit from self-reinnervated muscles contained a mixture of fiber types. In each motor unit, however, there was a predominance of fibers with the same MHC profile. The relative differences in the mean SDH activities found among fibers of different MHC profiles within a unit after self-reinnervation and those found among fibers in control muscles were similar, i.e., fast-2 < fast-1 < or = slow MHC fibers.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 79 (3) ◽  
pp. 1409-1424 ◽  
Author(s):  
Paul L. Gribble ◽  
David J. Ostry ◽  
Vittorio Sanguineti ◽  
Rafael Laboissière

Gribble, Paul L., David J. Ostry, Vittorio Sanguineti, and Rafael Laboissière. Are complex control signals required for human arm movement? J. Neurophysiol. 79: 1409–1424, 1998. It has been proposed that the control signals underlying voluntary human arm movement have a “complex” nonmonotonic time-varying form, and a number of empirical findings have been offered in support of this idea. In this paper, we address three such findings using a model of two-joint arm motion based on the λ version of the equilibrium-point hypothesis. The model includes six one- and two-joint muscles, reflexes, modeled control signals, muscle properties, and limb dynamics. First, we address the claim that “complex” equilibrium trajectories are required to account for nonmonotonic joint impedance patterns observed during multijoint movement. Using constant-rate shifts in the neurally specified equilibrium of the limb and constant cocontraction commands, we obtain patterns of predicted joint stiffness during simulated multijoint movements that match the nonmonotonic patterns reported empirically. We then use the algorithm proposed by Gomi and Kawato to compute a hypothetical equilibrium trajectory from simulated stiffness, viscosity, and limb kinematics. Like that reported by Gomi and Kawato, the resulting trajectory was nonmonotonic, first leading then lagging the position of the limb. Second, we address the claim that high levels of stiffness are required to generate rapid single-joint movements when simple equilibrium shifts are used. We compare empirical measurements of stiffness during rapid single-joint movements with the predicted stiffness of movements generated using constant-rate equilibrium shifts and constant cocontraction commands. Single-joint movements are simulated at a number of speeds, and the procedure used by Bennett to estimate stiffness is followed. We show that when the magnitude of the cocontraction command is scaled in proportion to movement speed, simulated joint stiffness varies with movement speed in a manner comparable with that reported by Bennett. Third, we address the related claim that nonmonotonic equilibrium shifts are required to generate rapid single-joint movements. Using constant-rate equilibrium shifts and constant cocontraction commands, rapid single-joint movements are simulated in the presence of external torques. We use the procedure reported by Latash and Gottlieb to compute hypothetical equilibrium trajectories from simulated torque and angle measurements during movement. As in Latash and Gottlieb, a nonmonotonic function is obtained even though the control signals used in the simulations are constant-rate changes in the equilibrium position of the limb. Differences between the “simple” equilibrium trajectory proposed in the present paper and those that are derived from the procedures used by Gomi and Kawato and Latash and Gottlieb arise from their use of simplified models of force generation.


Sign in / Sign up

Export Citation Format

Share Document