scholarly journals Microwave-assisted direct synthesis of butene from high-selectivity methane

2017 ◽  
Vol 4 (12) ◽  
pp. 171367
Author(s):  
Yi-heng Lu ◽  
Kang Li ◽  
Yu-wei Lu

Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1–0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiO x –MoO y /SiO 2 are used as the catalyst, the methane–hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0–3.0 wt%.

2018 ◽  
Vol 36 (6) ◽  
pp. 531-537 ◽  
Author(s):  
Ye Chen ◽  
Xin Wang ◽  
Xuegang Luo ◽  
Xiaoyan Lin ◽  
Yu Zhang

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmad Asghari ◽  
Mohammadreza Khanmohammadi Khorrami ◽  
Sayed Habib Kazemi

AbstractThe present work introduces a good prospect for the development of hierarchical catalysts with excellent catalytic performance in the methanol to aromatic hydrocarbons conversion (MTA) process. Hierarchical H-ZSM5 zeolites, with a tailored pore size and different Si/Al ratios, were synthesized directly using natural kaolin clay as a low-cost silica and aluminium resource. Further explored for the direct synthesis of hierarchical HZSM-5 structures was the steam assisted conversion (SAC) with a cost-effective and green affordable saccharide source of high fructose corn syrup (HFCS), as a secondary mesopore agent. The fabricated zeolites exhibiting good crystallinity, 2D and 3D nanostructures, high specific surface area, tailored pore size, and tunable acidity. Finally, the catalyst performance in the conversion of methanol to aromatic hydrocarbons was tested in a fixed bed reactor. The synthesized H-ZSM5 catalysts exhibited superior methanol conversion (over 100 h up to 90%) and selectivity (over 85%) in the methanol conversion to aromatic hydrocarbon products.


2018 ◽  
Vol 8 (14) ◽  
pp. 3527-3538 ◽  
Author(s):  
G. Raveendra ◽  
Congming Li ◽  
Bin Liu ◽  
Yang Cheng ◽  
Fanhui Meng ◽  
...  

Hybrid catalysts composed of different loadings of Zr-promoted Zn/Al2O3with SAPO-34 zeolite were investigated for the direct synthesis of lower olefins from syngas in a fixed-bed reactor.


2012 ◽  
Vol 548 ◽  
pp. 153-159
Author(s):  
Mohammad Kazemeini ◽  
Masoud Habibi Zare ◽  
Nora Safabakhsh ◽  
Shadi Roshdi Ferdosi ◽  
Moslem Fattahi

In this study, mathematical modelling of oxidative coupling of methane (OCM) to C2hydrocarbons (C2H6and C2H4) over La2O3/CaO catalyst in a fixed-bed reactor operated under isothermal and non-isothermal conditions was investigated using the MATLAB program. In this process, methane and acetylene were the inputted feed and ethane, ethylene, propylene, propane, i-butane and n-butane were the output products. The amount of methane conversion obtained was 12.7% for the former feed however; if pure methane was inputted this conversion rose to 13.8%. Furthermore, the plasma process would enhance the conversion, selectivity towards desired product and process yield. A comparison between the thermal and the plasma process showed that the methane conversion and production yield in the plasma were higher than in the thermal process under the same operating conditions. Finally, the results of the catalytic OCM and methane conversion processes in the plasma phase were compared with one another.


2018 ◽  
Vol 9 (2) ◽  
pp. 69
Author(s):  
Widodo W Purwanto ◽  
Yuswan Muharam ◽  
Dwi Yulianti

Methane decomposition is an alternative way to produce high quality carbon nanotubes (CNTs) and hydrogen simultaneously. The use of gauze reactor for methane decomposition had proven in solving pressure drop problem in fixed bed reactor. This experiment was carried out to study the effects of operation conditions (space time, temperature, and feed ratio) to gauze rector performance. Ni-Cu-Al catalyst which is prepared by sol-gel method with atomic ratio 2:1:1, was coated to Stainless Steel gauze by dip coating method. The reaction was done by flowing methane into the reactor at atmospheric pressure and varying space time (0.0006; 0.0032; 0.006 g×kat×min/mL), temperature (700, 750, and 800°C), and feed ratio CH4:H2 (1:0, 4:1, 1:1). An online gas chromatograph is used to detect the gas products. Reactor performances were observed from methane conversion, hydrogen purity, carbon yield and quality of nanocarbon that have been produced. Experiment result showed that the highest reactor performance (except nanocarbon quality) occurred at space time 0.006 gr cat min/mL, temperature 700 °C, and with pure methane as feed which give methane conversion, hydrogen purity, and yield carbon results are 90.66%, 90.16%, and 37 g carbon/g catalyt, respectively. Based on SEM analysis indicated that the best nanocarbon morphology can be gained at CH4:H2 ratio of 1:1.Keyword : methane decompotition, gauze reactor, carbon nanotube Abstrak Dekomposisi katalitik metana adalah salah satu alternatif untuk memproduksi hidrogen dan nanokarbon bermutu tinggi secara simultan. Penggunaan reaktor gauze untuk dekomposisi metana terbukti dapat mengatasi permasalahan penyumbatan pada reaktor unggun diam. Penelitian ini dilakukan untuk mengetahui pengaruh kondisi operasi (space time, temperatur, dan rasio umpan) terhadap kinerja reaktor gauze. Katalis Ni-Cu-Al disiapkan dengan menggunakan metode sol-gel dengan perbandingan atomik 2:1:1 dilapiskan pada gauze Stainless Steel dengan metode dip-coating. Reaksi dilakukan dengan mengalirkan metana ke dalam reaktor pada tekanan atmosferik dan dengan memvariasikan space time (0,0006; 0,0032; 0,006 g×kat×min/mL), temperatur (700, 750, dan 800 °C), dan rasio umpan CH4:H2 (1:0, 4:1, 1:1). Produk gas dianalisis dengan menggunakan gas chromatography yang terpasang secara online. Kinerja reaktor pada penelitian ini ditinjau dari konversi metana, kemurnian hidrogen, perolehan dan kualitas nanokarbon yang dihasilkan. Berdasarkan hasil eksperimen diketahui bahwa kinerja reaktor paling tinggi (kecuali kualitas nanokarbon) terjadi pada space time 0,006 g×kat×min/mL, temperatur 700 °C, dan dengan menggunakan metana murni yang memberikan hasil konversi metana, kemurnian hidrogen, serta perolehan karbon secara berturut-turut 90,66%, 90,16%, dan 37 gram karbon/gram katalis. Hasil analisis menggunakan SEM menunjukkan bahwa morfologi nanokarbon paling baik didapat pada komposisi reaktan CH4: H2 = 1:1.Kata Kunci : dekomposisi metana, reaktor gauze, karbon nanotube


2013 ◽  
Vol 864-867 ◽  
pp. 366-372 ◽  
Author(s):  
Liang Yan Xia ◽  
Zhi Xiang Xia ◽  
Wei Tang ◽  
Hong Yan Wang ◽  
Meng Xiang Fang

MCM-41 supported nickel phosphide (Ni2P/MCM-41) was prepared by temperature-programmed reduction of the corresponding phosphate. The catalyst activity for hydrodeoxygenation (HDO), hydrodearomatization (HDA), hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) was investigated in a fixed bed reactor. O-cresol HDO, 1-methylnaphthalene HDA, quinoline HDN, dibenzothiophene HDS and simultaneous HDO, HDA, HDN, HDS were respectively tested at different temperatures with constant pressure (6.0 MPa), liquid hourly space velocity (3.0 h-1), hydrogen-to-oil volume ratio (600:1). The results indicate that Ni2P /MCM-41 catalyst has great performance on HDO, HDA, HDN, HDS in single model compound reactions. O-cresol and DBT are almost completely transformed at 375°C, while 1-methylnaphthalene and quinoline reach the highest conversion at 300°C. In the simultaneous reactions, quinoline shows higher conversion by competitive adsorption on the catalyst hydrogenation sites, leading to conversion decrease of o-cresol, 1-methylnaphthalene and DBT.


2017 ◽  
Vol 33 (2) ◽  
Author(s):  
José R.G. Sánchez-López ◽  
Angel Martínez-Hernández ◽  
Aracely Hernández-Ramírez

AbstractCurrently, few processes can be considered practical alternatives to the use of petroleum for liquid fuel production. Among these alternatives, the Fischer-Tropsch synthesis (FTS) reaction has been successfully applied commercially. Nevertheless, many of the fundamentals of this process are difficult to understand because of its complexity, which depends strongly on the catalyst and the reactor design and operating conditions, as the reaction is seriously affected by mass and heat transport issues. Thus, studying this reaction system with transport phenomena models can help to elucidate the impact of different parameters on the reaction. According to the literature, modeling FTS systems with 1D models provides valuable information for understanding the phenomena that occur during this process. However, 2D models must be used to simulate the reactor to correctly predict the reactor variables, particularly the temperature, which is a critical parameter to achieve a suitable distribution of products during the reaction. Thus, this work provides a general resume of the current findings on the modeling of transport phenomena on a particle/pellet level in a tubular fixed-bed reactor.


Sign in / Sign up

Export Citation Format

Share Document