scholarly journals Response time of an avian prey to a simulated hawk attack is slower in darker conditions, but is independent of hawk colour morph

2019 ◽  
Vol 6 (8) ◽  
pp. 190677 ◽  
Author(s):  
Carina Nebel ◽  
Petra Sumasgutner ◽  
Adrien Pajot ◽  
Arjun Amar

To avoid predation, many species rely on vision to detect predators and initiate an escape response. The ability to detect predators may be lower in darker light conditions or with darker backgrounds. For birds, however, this has never been experimentally tested. We test the hypothesis that the response time of avian prey (feral pigeon Columbia livia f. domestica ) to a simulated hawk attack (taxidermy mounted colour-polymorphic black sparrowhawk Accipiter melanoleucus ) will differ depending on light levels or background colour. We predict that response will be slower under darker conditions, which would translate into higher predation risk. The speed of response of prey in relation to light level or background colour may also interact with the colour of the predator, and this idea underpins a key hypothesis proposed for the maintenance of different colour morphs in polymorphic raptors. We therefore test whether the speed of reaction is influenced by the morph of the hawk (dark/light) in combination with light conditions (dull/bright), or background colours (black/white). We predict slowest responses to morphs under conditions that less contrast with the plumage of the hawk (e.g. light morph under bright light or white background). In support of our first hypothesis, pigeons reacted slower under duller light and with a black background. However, we found no support for the second hypothesis, with response times observed between the hawk-morphs being irrespective of light levels or background colour. Our findings experimentally confirm that birds detect avian predators less efficiently under darker conditions. These conditions, for example, might occur during early mornings or in dense forests, which could lead to changes in anti-predator behaviours. However, our results provide no support that different morphs may be maintained in a population due to differential selective advantages linked to improved hunting efficiencies in different conditions due to crypsis.

Author(s):  
John William Carey Medithe ◽  
Usha Rani Nelakuditi

The influence of light on Electroencephalogram seems to be more critical, when physician depends on its readings to diagnose subject brain disorder according to its level. Although, bright light brings various changes in human physiological variables. But, Neurophysiological changes for specific light level still remain unclear. Thereby, in the present study, the response of brain electrical activity towards various light levels has been classified and verified. The reasons for alteration in different physiological variables due to bright light which results change in the state of electroencephalographic recordings has been reviewed. Additionally, the effects of bright light towards Ocular artifacts are also put forward. A novel hypothesis has been made using subjective analysis and experimental analysis in low luminance or darkness. It is observed that a poor lighting condition affects both behavioral task and brain activity.


2021 ◽  
Vol 11 (18) ◽  
pp. 8679
Author(s):  
Hsin-Pou Huang ◽  
Minchen Wei ◽  
Hung-Chung Li ◽  
Li-Chen Ou

E-reading devices are becoming more and more common in our daily life, and they are used under a wide range of ambient light levels, from completely dark to extremely bright conditions. In this study, a psychophysical experiment is carried out to investigate how ambient light level affects the visual comfort of an e-reading device. Human observers compare the visual comfort of pairs of different text-background lightness combinations on a tablet device under three ambient light levels (i.e., 150, 1500, and 15,000 lx). With our previous work, the experimental results show that the trend of visual comfort interval scales below 1500 lx (i.e., Dark, 150, 300, and 1500 lx) are similar to each other but not for those under illuminance above the 1500 lx (i.e., 3000 and 15,000 lx). For the same lightness difference between text and background, the observers tend to read the text with a white background compared to a black background, especially for 3000 and 15,000 lx. Moreover, a black text on a light-gray background is the most comfortable combination under these two illuminance levels. An evaluation model is proposed based on ambient illuminance, screen parameters, and visual estimation to design an optimal viewing condition when reading on the tablet display.


2021 ◽  
Vol 17 (9) ◽  
pp. 20210320
Author(s):  
Tanvi Deora ◽  
Mahad A. Ahmed ◽  
Bingni W. Brunton ◽  
Thomas L. Daniel

Nocturnal insects like moths are essential for pollination, providing resilience to the diurnal pollination networks. Moths use both vision and mechanosensation to locate the nectary opening in the flowers with their proboscis. However, increased light levels due to artificial light at night (ALAN) pose a serious threat to nocturnal insects. Here, we examined how light levels influence the efficacy by which the crepuscular hawkmoth Manduca sexta locates the nectary. We used three-dimensional-printed artificial flowers fitted with motion sensors in the nectary and machine vision to track the motion of hovering moths under two light levels: 0.1 lux (moonlight) and 50 lux (dawn/dusk). We found that moths in higher light conditions took significantly longer to find the nectary, even with repeated visits to the same flower. In addition to taking longer, moths in higher light conditions hovered further from the flower during feeding. Increased light levels adversely affect learning and motor control in these animals.


2010 ◽  
Vol 88 (5) ◽  
pp. 448-453 ◽  
Author(s):  
Alexander T. Baugh ◽  
Michael J. Ryan

It is well known that animal decision-making can be influenced by environmental variables, such as the risk of predation. During the breeding season, nocturnal amphibians encounter a range of environmental conditions at breeding aggregations, including variable ambient light conditions. For nocturnal frogs, illumination is expected to minimize conspicuous movement that might increase predator detection. Previous work has shown that female Physalaemus pustulosus (Cope, 1864) (= Engystomops pustulosus (Cope, 1864)) are sensitive to variation in light levels during mate choice. Here we use an acoustic playback design in which stimuli are adjusted for intensity and complexity during female phonotaxis to show that choosiness is influenced by light level. Frogs were more likely to commit to an initial mate choice despite a dynamic reduction in mate attractiveness under dim light conditions compared with darkness. These results suggest that females are trading off the attractiveness of potential mates with the perceived costs of executing mate choice by committing to an initial decision and thereby reducing assessment time and movement. The dynamic playback design used here provides an approach that could be applied in other systems in which context-dependent decision-making is thought to be important.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1783
Author(s):  
Louis John Irving ◽  
Sayuki Mori

Plants allocate biomass to above- and below-ground organs in response to environmental conditions. While the broad patterns are well-understood, the mechanisms by which plants allocate new growth remain unclear. Modeling approaches to biomass allocation broadly split into functional equilibrium type models and more mechanistically based transport resistance type models. We grew Poa annua plants in split root boxes under high and low light levels, high and low N supplies, with N supplied equally or unequally. Our data suggest that light level had the strongest effect on root mass, with N level being more important in controlling shoot mass. Allocation of growth within the root system was compatible with phloem partitioning models. The root mass fraction was affected by both light and N levels, although within light levels the changes were primarily due to changes in shoot growth, with root mass remaining relatively invariant. Under low light conditions, plants exhibited increased specific leaf area, presumably to compensate for low light levels. In a follow-up experiment, we showed that differential root growth could be suppressed by defoliation under low light conditions. Our data were more compatible with transport resistance type models.


2005 ◽  
Vol 24 (2) ◽  
pp. 37-44 ◽  
Author(s):  
Yi-Hui Lee ◽  
Nima Malakooti ◽  
Marilyn Lotas

Purpose: The use of incubator covers to enhance preterm infants’ rest and recovery is common in the NICU. However, the kinds of covers used vary extensively among and within nurseries. Few data exist on the effectiveness of different types of covers in reducing light levels to the infant. This study compared several types of commonly used incubator covers as to efficacy of light reduction.Design: A descriptive, comparative design was used in this study.Sample: Twenty-three incubator covers were tested, including professional, receiving blanket, hand-crocheted, three-layer quilt, and flannel.Main Outcome Variable: The percentage of light level reduction of different incubator covers under various ambient light level settings.Results: The amount of light reduction provided by incubator covers varies depending on type of fabric as well as percentage of incubator surface shielded by the cover. Dark-colored covers provided greater light reduction than bright/light-colored covers when covers identical in fabric type were compared. The light-reduction efficiency of the covers varied depending on the level of ambient light. Covers provided less light reduction in higher ambient light levels.


2019 ◽  
Vol 2019 (1) ◽  
pp. 320-325 ◽  
Author(s):  
Wenyu Bao ◽  
Minchen Wei

Great efforts have been made to develop color appearance models to predict color appearance of stimuli under various viewing conditions. CIECAM02, the most widely used color appearance model, and many other color appearance models were all developed based on corresponding color datasets, including LUTCHI data. Though the effect of adapting light level on color appearance, which is known as "Hunt Effect", is well known, most of the corresponding color datasets were collected within a limited range of light levels (i.e., below 700 cd/m2), which was much lower than that under daylight. A recent study investigating color preference of an artwork under various light levels from 20 to 15000 lx suggested that the existing color appearance models may not accurately characterize the color appearance of stimuli under extremely high light levels, based on the assumption that the same preference judgements were due to the same color appearance. This article reports a psychophysical study, which was designed to directly collect corresponding colors under two light levels— 100 and 3000 cd/m2 (i.e., ≈ 314 and 9420 lx). Human observers completed haploscopic color matching for four color stimuli (i.e., red, green, blue, and yellow) under the two light levels at 2700 or 6500 K. Though the Hunt Effect was supported by the results, CIECAM02 was found to have large errors under the extremely high light levels, especially when the CCT was low.


1987 ◽  
Vol 44 (12) ◽  
pp. 2144-2154 ◽  
Author(s):  
M. Putt ◽  
G. P. Harris ◽  
R. L. Cuhel

Measurement of 1-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) enhanced fluorescence (FDCMU) suggested that photoinhibition of photosynthesis was frequently an artifact of in situ bottle incubations in Lake Ontario phytoplankton. In a seasonal study, FDCMU of all populations was depressed by bright light in an incubator. However, when the euphotic zone did not exceed the depth of the mixed layer, vertical transport of phytoplankton into either low-light or dark regions apparently allowed reversal of photoinhibition of FDCMU. Advantages of FDCMU as a bioassay of vertical mixing include rapidity of response time, ease of measurement in the field, and insensitivity of this parameter to changes in phosphorus status of the population. Because of seasonal changes in the photoadaptive response of natural populations, the rate constants and threshold light levels required to cause the response must be determined at each use if the method is to be quantitative.


1999 ◽  
Vol 15 (5) ◽  
pp. 589-602 ◽  
Author(s):  
Vidya R. Athreya

Strangler fig density varied considerably in the evergreen forest of Karian Shola National Park, southern India, with 11 individuals ha−1 in an open trail area and 5.6 individuals ha−1 within the primary forest area. The index of light level was assessed by estimating the percentage of upper canopy cover along the longitudinal centre of ten, 500-m × 20-m plots in each of the two areas of the evergreen forest. However, the increase in strangler fig density was not correlated to light levels but was significantly correlated to the numbers of their main host species in the two areas. In Karian Shola National Park, strangler figs occurred predominantly on a few host species with 20 and 50% of strangler figs growing on Vitex altissima, Diospyros bourdilloni and Eugenia/Syzygium spp. in the primary forest and trail areas respectively. Both young and established strangler figs were recorded mainly on larger individuals of their host trees indicating that older host trees are likely to be more suitable for the germination and establishment of strangler figs. The reason for the above could be the higher incidence of humus-filled and decaying regions in the older host trees which would provide an assured supply of nutrients for the establishing strangler fig.


2006 ◽  
Vol 18 (3) ◽  
pp. 359-365 ◽  
Author(s):  
Rogério M. Suzuki ◽  
Gilberto B. Kerbauy

This study attempted to clarify the effects of dark, light and ethylene on plant growth and endogenous levels of indole-3-acetic acid (IAA), cytokinins and abscisic acid in Catasetum fimbriatum. Dark-incubation fully inhibited root and pseudobulb formation as well as leaf growth, but favored shoot elongation. The results of continuous and active growth in dark-incubated shoots (stolons) were induced by strong apical meristem sink activity and by the significantly increased levels of cytokinins in shoots. In fact, shoot length, cytokinin and IAA levels in dark-incubated shoots were about twice as great as for those grown under light conditions. Moreover, the total cytokinin level in shoots of C. fimbriatum under light conditions without ethylene was significantly higher than that found in roots. High levels of cytokinins in dark-grown stolons may be closely related to the absence of roots in C. fimbriatum. Under light conditions, the increased IAA level in shoots is mediated by ethylene. However, ethylene caused a significant increase of cytokinins in roots of light-treated plants, which may be involved in the retardation of root growth. Since the difference of cytokinins in shoots between ethylene-treated and non-treated plants under light conditions is small, it is concluded that the marked inhibition of leaf growth in ethylene-treated plants can be attributed to ethylene. Zeatin and zeatin riboside are the major cytokinins in C. fimbriatum regardless of the light conditions, ethylene treatment or organ types.


Sign in / Sign up

Export Citation Format

Share Document