scholarly journals Substantial variability in morphological scaling among bumblebee colonies

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
C. D. Perl ◽  
Z. B. Johansen ◽  
V. W. Jie ◽  
Z. Moradinour ◽  
M. Guiraud ◽  
...  

Differences in organ scaling among individuals may play an important role in determining behavioural variation. In social insects, there are well-documented intraspecific differences in colony behaviour, but the extent that organ scaling differs within and between colonies remains unclear. Using 12 different colonies of the bumblebee Bombus terrestris , we aim to address this knowledge gap by measuring the scaling relationships between three different organs (compound eyes, wings and antennae) and body size in workers . Though colonies were exposed to different rearing temperatures, this environmental variability did not explain the differences of the scaling relationships. Two colonies had differences in wing versus antenna slopes, three colonies showed differences in wing versus eye slopes and a single colony has differences between eye versus antenna slopes. There are also differences in antennae scaling slopes between three different colonies, and we present evidence for putative trade-offs in morphological investment. We discuss the utility of having variable scaling among colonies and the implication for understanding variability in colony fitness and behaviour.

Author(s):  
Jenny Romell ◽  
Vun Wen Jie ◽  
Arttu Miettinen ◽  
Emily Baird ◽  
Hans M. Hertz

2011 ◽  
Vol 89 (2) ◽  
pp. 90-99 ◽  
Author(s):  
James D. Gardiner ◽  
Jonathan R. Codd ◽  
Robert L. Nudds

Most studies relating bat morphology to flight ecology have concentrated on the wing membrane. Here, canonical variance analysis showed that the ear and tail morphologies of bats also strongly relate to foraging strategy, which in turn is correlated with flight style. Variations in tail membrane morphology are likely to be a trade-off between increases in the mechanical cost of flight and improvements in foraging and flight performance. Flying with large ears is also potentially energetically expensive, particularly at high flight speeds. Large ears, therefore, are only likely to be affordable for slow foraging gleaning bat species. Bats with faster foraging flight styles tend to have smaller ears, possibly to cut the overall drag produced and reduce the power required for flight. Variations in the size of ears and tail membranes appear to be driven primarily by foraging strategy and not by body size, because the scaling relationships found are either weak or not significant. Ear size in bats may be a result of a trade-off between acoustic and aerodynamic performance.


2015 ◽  
Author(s):  
Marjon GJ de Vos ◽  
Alexandre Dawid ◽  
Vanda Sunderlikova ◽  
Sander J Tans

Epistatic interactions can frustrate and shape evolutionary change. Indeed, phenotypes may fail to evolve because essential mutations can only be selected positively if fixed simultaneously. How environmental variability affects such constraints is poorly understood. Here we studied genetic constraints in fixed and fluctuating environments, using theEscherichia coli lacoperon as a model system for genotype-environment interactions. The data indicated an apparent paradox: in different fixed environments, mutational trajectories became trapped at sub-optima where no further improvements were possible, while repeated switching between these same environments allowed unconstrained adaptation by continuous improvements. Pervasive cross-environmental trade-offs transformed peaks into valleys upon environmental change, thus enabling escape from entrapment. This study shows that environmental variability can lift genetic constraint, and that trade-offs not only impede but can also facilitate adaptive evolution.


2021 ◽  
Vol 9 ◽  
Author(s):  
Abel Bernadou ◽  
Boris H. Kramer ◽  
Judith Korb

The evolution of eusociality in social insects, such as termites, ants, and some bees and wasps, has been regarded as a major evolutionary transition (MET). Yet, there is some debate whether all species qualify. Here, we argue that worker sterility is a decisive criterion to determine whether species have passed a MET (= superorganisms), or not. When workers are sterile, reproductive interests align among group members as individual fitness is transferred to the colony level. Division of labour among cooperating units is a major driver that favours the evolution of METs across all biological scales. Many METs are characterised by a differentiation into reproductive versus maintenance functions. In social insects, the queen specialises on reproduction while workers take over maintenance functions such as food provisioning. Such division of labour allows specialisation and it reshapes life history trade-offs among cooperating units. For instance, individuals within colonies of social insects can overcome the omnipresent fecundity/longevity trade-off, which limits reproductive success in organisms, when increased fecundity shortens lifespan. Social insect queens (particularly in superorganismal species) can reach adult lifespans of several decades and are among the most fecund terrestrial animals. The resulting enormous reproductive output may contribute to explain why some genera of social insects became so successful. Indeed, superorganismal ant lineages have more species than those that have not passed a MET. We conclude that the release from life history constraints at the individual level is a important, yet understudied, factor across METs to explain their evolutionary success.


<em>Abstract</em>.—Stream fishes carry out their life histories across broad spatial and temporal scales, leading to spatially structured populations. Therefore, incorporating metapopulation dynamics into models of stream fish populations may improve our ability to understand mechanisms regulating them. First, we reviewed empirical research on metapopulation dynamics in the stream fish ecology literature and found 31 papers that used the metapopulation framework. The majority of papers applied no specific metapopulation model, or included space only implicitly. Although parameterization of spatially realistic models is challenging, we suggest that stream fish ecologists should incorporate space into models and recognize that metapopulation types may change across scales. Second, we considered metacommunity theory, which addresses how trade-offs among dispersal, environmental heterogeneity, and biotic interactions structure communities across spatial scales. There are no explicit tests of metacommunity theory using stream fishes to date, so we used data from our research in a Great Plains stream to test the utility of these paradigms. We found that this plains fish metacommunity was structured mainly by spatial factors related to dispersal opportunity and, to a lesser extent, by environmental heterogeneity. Currently, metacommunity models are more heuristic than predictive. Therefore, we propose that future stream fish metacommunity research should focus on developing testable hypotheses that incorporate stream fish life history attributes, and seasonal environmental variability, across spatial scales. This emerging body of research is likely to be valuable not only for basic stream fish ecological research, but also multispecies conservation and management.


2018 ◽  
pp. 68-97
Author(s):  
Douglas S. Glazier

In this chapter, I show how clutch mass, offspring (egg) mass, and clutch size relate to body mass among species of branchiopod, maxillipod, and malacostracan crustaceans, as well as how these important life history traits vary among major taxa and environments independently of body size. Clutch mass relates strongly and nearly isometrically to body mass, probably because of physical volumetric constraints. By contrast, egg mass and clutch size relate more weakly and curvilinearly to body mass and vary in inverse proportion to one another, thus indicating a fundamental trade-off, which occurs within many crustacean taxa as well. In general, offspring (egg) size and number and their relationships to body mass appear to be more ecologically sensitive and evolutionarily malleable than clutch mass. The body mass scaling relationships of egg mass and clutch size show much more taxonomic and ecological variation (log-log scaling slopes varying from near 0 to almost 1 among major taxa) than do those for clutch mass, a pattern also observed in other animal taxa. The curvilinear body mass scaling relationships of egg mass and number also suggest a significant, size-related shift in how natural selection affects offspring versus maternal fitness. As body size increases, selection apparently predominantly favors increases in offspring size and fitness up to an asymptote, beyond which increases in offspring number and thus maternal fitness are preferentially favored. Crustaceans not only offer excellent opportunities for furthering our general understanding of life history evolution, but also their ecological and economic importance warrants further study of the various factors affecting their reproductive success.


2020 ◽  
Vol 6 (11) ◽  
pp. eaaz3318 ◽  
Author(s):  
Daniel J. Martin ◽  
Brandon Q. Mercado ◽  
James M. Mayer

The development of advanced chemical-to-electrical energy conversions requires fast and efficient electrocatalysis of multielectron/multiproton reactions, such as the oxygen reduction reaction (ORR). Using molecular catalysts, correlations between the reaction rate and energy efficiency have recently been identified. Improved catalysis requires circumventing the rate versus overpotential trade-offs implied by such “scaling relationships.” Described here is an ORR system—using a soluble iron porphyrin and weak acids—with the best reported combination of rate and efficiency for a soluble ORR catalyst. This advance is achieved not by “breaking” scaling relationships but rather by combining two of them. Key to this behavior is a polycationic ligand, which enhances anionic ligand binding and changes the catalyst E1/2. These results show how combining scaling relationships is a powerful way toward improved electrocatalysis.


Paleobiology ◽  
2013 ◽  
Vol 39 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Douglas S. Glazier ◽  
Matthew G. Powell ◽  
Travis J. Deptola

We infer the body-size scaling slope of metabolic rate in a trilobite by applying a cell-size model that has been proposed to explain metabolic scaling in living organisms. This application is especially tractable in fossil arthropods with well-preserved compound eyes because the number and size of eye facets appear to be useful proxies for the relative number and size of cells in the body. As a case study, we examined the ontogenetic scaling of facet size and number in a ∼390-Myr-old local assemblage of the trilobite Eldredgeops rana, which has well-preserved compound eyes and a wide body-size range. Growth in total eye lens area resulted from increases in both facet area and number in relatively small (presumably young) specimens, but only from increases in facet area in large (presumably more mature) specimens. These results suggest that early growth in E. rana involved both cell multiplication and enlargement, whereas later growth involved only cell enlargement. If the cell-size model is correct, then metabolic rate scaled allometrically in E. rana, and the scaling slope of log metabolic rate versus log body mass decreased from ∼0.85 to 0.63 as these animals grew. This inferred age-specific change in metabolic scaling is consistent with similar changes frequently observed in living animals. Additional preliminary analyses of literature data on other trilobites also suggest that the metabolic scaling slope was <1 in benthic species, but ∼1 in pelagic species, as has also been observed in living invertebrates. The eye-facet size (EFS) method featured here opens up new possibilities for examining the bioenergetic allometry of extinct arthropods.


2013 ◽  
Vol 67 (10) ◽  
pp. 1601-1612 ◽  
Author(s):  
Hagai Shpigler ◽  
Matan Tamarkin ◽  
Yael Gruber ◽  
Maayan Poleg ◽  
Adam J. Siegel ◽  
...  

2019 ◽  
Vol 76 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Emily Y. Campbell ◽  
Jason B. Dunham ◽  
Gordon H. Reeves ◽  
Steve M. Wondzell

Phenology can be linked to individual fitness, particularly in strongly seasonal environments where the timing of events has important consequences for growth, condition, and survival. We studied the phenology of coho salmon (Oncorhynchus kisutch) hatching and emergence in streams with contrasting thermal variability but in close geographic proximity. Following emergence, we tracked body sizes of cohorts of young-of-year fish until the end of the growing season. Hatch and emergence occurred at the same time among streams with marked variability in thermal regimes. We demonstrate that this can be explained in part by the thermal units accumulated during embryo development. At the end of the first growing season, there were some differences in body size, but overall fish size was similar among streams despite strong differences in thermal regimes. Collectively, these results provide novel insights into the interactions between environmental variability and the early life-history stages of coho salmon, furthering our understanding of the consequences of phenology on growth and survival for individuals within the critical first summer of life.


Sign in / Sign up

Export Citation Format

Share Document