scholarly journals Analysis of α-rays by an annular magnetic field

In previous papers an account has been given of a new counting method for analysing the groups of α-rays emitted by radioactive substances, and for measuring directly their mean range in air. In the course of these experiments, we showed that the long range groups of α-particles from radium C' are very complex, consisting of at least nine groups, with mean ranges lying between 7·7 and 11·6 cm. of air. As it is believed that the energies of these long range groups are intimately connected with those of the γ-rays from radium C', it has become of great importance to determine the energies of these groups of particles with precision. As, however, the seven groups with ranges between 9·5 and 11·6 cm. differ so little in velocity that they can only be partially resolved in range measurements, it was very difficult in our experiments to determine the mean ranges with accuracy. Moreover, there has been considerable uncertainty as to the precise relation between the range and velocity of such long range particles. A much greater resolving power can be obtained by a direct velocity determination, using a magnet to bend the α-rays into a circle. The great Paris electromagnet has been used in this way by Rosenblum, who photographed the α-ray spectra produced by the well-known focussing method. He has demonstrated the complexity of a number of α-ray groups, and has measured their velocities with an accuracy of at least 1 in 1000.

The analysis of groups of α-particles by new counting methods has been described in previous papers, in which details have been given of the examination of the α-particles emitted by radium-C and -C' thorium-C and -C', and actinium-C and -C', including the long range particles. The methods have the advantage that any appreciable inhomogeneity of a group of α-particles is readily detected, and moreover, the mean range of a group may be directly measured with a high degree of precision. The experiments have now been extended to an examination of the α-particles emitted by the emanations and “A” products of the three radioactive series, and by polonium. The examination of these α-ray groups is not only of great interest from the point of view of the radioactive transformations, but also for the possible connection with the emission of γ-rays.


Reliable information about the γ-rays emitted by radium C' is particularly valuable since the main features of the nuclear level system are shown by the groups of long range α-particles and are hence accessible to direct investigation. These long range groups of α-particles have been measured recently by Rutherford, Lewis and Bowden by a greatly improved method which has not only brought to light several new groups, but in addition has given considerably greater accuracy in the determination of the energies of the groups than had been possible in the past. The energy of these groups in excess of that of the normal group is a measure of the excitation energy of the nucleus and the older measurements had indicated, as was to be expected, a close correspondence between these energies and the quantum energies of the γ-rays. The recent more accurate measurements of Rutherford, Lewis and Bowden provided the opportunity of a more rigorous test of this connection and showed the possibility, by the combination of the information from these two sources, of a direct experimental determination of the level system. However, the accuracy of the published data on the Ra C γ-rays deduced from the natural β-ray spectrum was subject to some doubts for the following reasons. The measurements dated from 1924 when the absolute energies of certain strong groups in the β-ray spectrum were measured and the energies of the remaining lines determined by relative measurements. The strong groups in question lay between 0.4 X 10 5 and 3.0 X 10 5 volts and the procedure of step-wise comparision up to energies of over 2 X 10 6 volts may have led to cumulative errors. More serious was that recent measurements on the Th (B + C) β-ray spectrum had thrown doubt on the correctness of the absolute values. Lastly, experiment gives values for H ρ , that is the momenta of the electrons in the groups, and the calculation of the energies involves e / m . The older data had been based on e / m = 1.769 X 10 7 , and while the change to the value 1.760 X 10 7 alters the energies proportionally far less, there was involved here an avoidable error which had to be removed.


As a result of the experiments of Rutherford, Ward and Lewis, it is now generally accepted that the emission of γ-rays from radioactive bodies is associated with the transitions of α-particles between stationary states in the nucleus. Direct evidence for the existence of these excited states in the case of radium C' is obtained from the several groups of long range α-particles which have been detected. Rosenblum has found that thorium C also emits several groups of α-particles, and the existence of a corresponding number of nuclear α-particle states can be safely inferred, which should also give rise to γ-radiation. This case was first discussed by Gamow, who pointed out that there was an essential difference here from radium C' In the latter body the extra α-particle states all have energy greater than the normal, and emission of the corresponding long range α-particles is a rare phenomenon, of the order of one long range particle for a million normal α-particles. The case of radium C' appears to be accounted for satisfactorily by the assumption of two alternative processes, either internal nuclear switch or α-emission from the excited state, the relative frequencies of occurrence depending on the ratio of the transition probabilities. With thorium C, however, the most intense α-particle group is not the one of lowest energy, and the groups only vary in intensity by a factor of one hundred instead of one million as with radium C' The assumption of alternative processes of γ-and α-emission would lead to values for the ratio of the transition probabilities for the two processes which are absolutely incompatible with what is known about the orders of magnitude of the probabilities of α-particle emission and radiation switch. Gamow therefore proposed that the thorium C nucleus is initially formed with its α-particles all in the gromid state and that disintegration could sometimes occur in such a way as to leave the product nucleus excited. Rosenblum gives the following data for the velocities and relative intensities of the groups from thorium C.


1948 ◽  
Vol 26a (5) ◽  
pp. 313-325 ◽  
Author(s):  
S. C. Fultz ◽  
G. N. Harding

At least two energy level schemes have been proposed for the ThC′ nucleus, which is excited in the β-disintegration ThCC′. That of Ellis (1933) includes three γ-rays of energies 0.726, 1.62, and 1.80 Mev., the 1.62 Mev. ray being doubtful. The level scheme of Latyschev and Kulchitsky (1940) has eight γ-rays including one of energy 2.2 Mev., for which no corresponding long-range α-particle group has been observed. The two level schemes lead to widely differing values for the total γ-ray energy of ThCC′. In the present investigation a value for the total γ-ray energy of ThCC′ has been obtained by measuring coincidences between the γ-rays of ThCC′ and the subsequently emitted α-particles of ThC′. It is shown that this value (0.14 Mev.) favors the level scheme of Ellis, including only the γ-rays of energy 0.726 and 1.80 Mev., and taking the former as electric quadrupole. It was found that under certain conditions the external bremsstrahlung excited by the β-rays of ThCC′ in the source-holder contributed appreciably to the coincidence rate. Precautions were taken to minimize this effect.


In our last paper we gave an account of an annular ring magnet capable of focussing groups of α -particles after they have traversed a semicircle of 40 cm. radius. By this method the velocities of a number of important groups of α -particles were measured with a relative accuracy, it is believed, of 1 in 5000. Preliminary measurements were described of the two long range groups from thorium C´ and of two from radium C´. In a previous paper we had shown by means of counting methods that the long range groups of α -particles from radium C´ were much more complicated than those from thorium C´, and consisted of at least nine distinct groups. This older method, however, had not sufficient resolving power to separate completely a number of these groups, and the annular ring magnet was constructed primarily to make a more complete analysis of this α -ray spectrum. It is hardly necessary at this stage to emphasize the importance of accurate measurements of the energies of these groups, for they give us direct information of the energy levels of the α -particle in an excited nucleus, which is of fundamental importance in considering the question of the origin of the γ -rays from radium C´.


As a result of recent experiments, evidence is accumulating that the pene­trating γ -rays from radioactive substances have their origin not in the movement of electrons but in the transitions of α -particles in an excited nucleus. Strong evidence in support of this view was obtained by Rutherford, Ward and Lewis from their analysis of the groups of long range α -particles from radium C', and a more detailed discussion of the results was given by Rutherford and Ellis. This problem of the origin of the γ -rays can be attacked in another direction from a consideration of the so-called fine structure shown by the groups of α -particles emitted by certain radioactive substances. In particular, Rosenblum found that the transformation of thorium C was accompanied by the appearance of five homogeneous groups of α -particles. In explanation of these results, Gamow suggested that γ -rays should be emitted as a result of such a complex transformation, the energies of the individual γ -rays corre­sponding to the differences of energies between the α -particles in the various groups. Unfortunately it is a difficult matter to give a decisive answer on this important question. In a recent paper, Ellis concludes that the experimental evidence is in support of Gamow’s theory, but on the other hand, Meitner as a result of her investigations, has expressed a contrary opinion. It is thus of much impor­tance to examine all methods of obtaining evidence on this question.


In a recent paper, an account has been given of the analysis of the long range α-particles emitted by radium C. Nine distinct groups of α-particles were detected varying in range between 7·8 and 11·6 cm. in air. Evidence was given that the emission of γ-rays from radium C is intimately connected with the occurrence of these groups of long range α-particles, and it was concluded that the γ-rays arise from the transition of an α-particle in an excited nucleus between two levels of different energies. This question has been discussed in more detail by Rutherford and Ellis, who have advanced a tentative theory to account for the relation between the energies of the γ-rays emitted from radium C. In the present paper we give the results of a corresponding analysis of the long range α-particles from thorium C and an analysis of the groups of α-particles emitted from actinium C. In these experiments the differential method of analysis was used, as in the experiments with radium C. In the present experiments, however, instead of recording the α-particles photographically on a moving film, we have mainly employed the automatic method of counting, using thyratrons in place of the oscillograph. This method, which has been developed by one of us (C. E. Wynn-Williams), has been fully discussed in a recent paper. Here it suffices merely to refer to one or two points of special interest in connection with the present research.


Author(s):  
S. Horiuchi ◽  
Y. Matsui

A new high-voltage electron microscope (H-1500) specially aiming at super-high-resolution (1.0 Å point-to-point resolution) is now installed in National Institute for Research in Inorganic Materials ( NIRIM ), in collaboration with Hitachi Ltd. The national budget of about 1 billion yen including that for a new building has been spent for the construction in the last two years (1988-1989). Here we introduce some essential characteristics of the microscope.(1) According to the analysis on the magnetic field in an electron lens, based on the finite-element-method, the spherical as well as chromatic aberration coefficients ( Cs and Cc ). which enables us to reach the resolving power of 1.0Å. have been estimated as a function of the accelerating As a result of the calculaton. it was noted that more than 1250 kV is needed even when we apply the highest level of the technology and materials available at present. On the other hand, we must consider the protection against the leakage of X-ray. We have then decided to set the conventional accelerating voltage at 1300 kV. However. the maximum accessible voltage is 1500 kV, which is practically important to realize higher voltage stabillity. At 1300 kV it is expected that Cs= 1.7 mm and Cc=3.4 mm with the attachment of the specimen holder, which tilts bi-axially in an angle of 35° ( Fig.1 ). In order to minimize the value of Cc a small tank is additionally placed inside the generator tank, which must serve to seal the magnetic field around the acceleration tube. An electron gun with LaB6 tip is used.


2014 ◽  
Vol 2 (2) ◽  
pp. 72-79 ◽  
Author(s):  
Mercedes Florez ◽  
Elvira Martinez ◽  
Victoria Carbonell

The main objective of this study is to determine the effects of 125 mT and 250mT magnetic treatment on the germination and initial growth of triticale seeds. This objective has a practical application in agriculture science: early growth of triticale. An increase in the percentage and rate of germination of seeds and a stimulation of growth of seedlings as positive response to magnetic field treatment in rice, wheat, maize and barley seeds have been found in previous studies. Germination tests were carried out under laboratory conditions by exposing triticale seeds to magnetic field for different times. The effect was studied by exposure of seeds prior sowing. The mean germination time were reduced for all the magnetic treatments applied. Most significant differences were obtained for time of exposure of 1 and 24 hours and maximum reductions was 12%. Furthermore, seedlings from magnetically treated seeds grew taller than control. The longest mean total length was obtained from seedlings exposed to 125 and 250 mT for 24 hours. External magnetic fields are assumed to enhance seed vigor by influencing the biochemical processes by stimulating activity of proteins and enzymes. Numerous studies suggested that magnetic field increases ions uptake and consequently improves nutrition value.


Author(s):  
Norman J. Morgenstern Horing

Chapter 13 addresses Bose condensation in superfluids (and superconductors), which involves the field operator ψ‎ having a c-number component (<ψ(x,t)>≠0), challenging number conservation. The nonlinear Gross-Pitaevskii equation is derived for this condensate wave function<ψ>=ψ−ψ˜, facilitating identification of the coherence length and the core region of vortex motion. The noncondensate Green’s function G˜1(1,1′)=−i<(ψ˜(1)ψ˜+(1′))+> and the nonvanishing anomalous correlation function F˜∗(2,1′)=−i<(ψ˜+(2)ψ˜+(1′))+> describe the dynamics and elementary excitations of the non-condensate states and are discussed in conjunction with Landau’s criterion for viscosity. Associated concepts of off-diagonal long-range order and the interpretation of <ψ> as a superfluid order parameter are also introduced. Anderson’s Bose-condensed state, as a phase-coherent wave packet superposition of number states, resolves issues of number conservation. Superconductivity involves bound Cooper pairs of electrons capable of Bose condensation and superfluid behavior. Correspondingly, the two-particle Green’s function has a term involving a product of anomalous bound-Cooper-pair condensate wave functions of the type F(1,2)=−i<(ψ(1)ψ(2))+>≠0, such that G2(1,2;1′,2′)=F(1,2)F+(1′,2′)+G˜2(1,2;1′,2′). Here, G˜2 describes the dynamics/excitations of the non-superfluid-condensate states, while nonvanishing F,F+ represent a phase-coherent wave packet superposition of Cooper-pair number states and off-diagonal long range order. Employing this form of G2 in the G1-equation couples the condensed state with the non-condensate excitations. Taken jointly with the dynamical equation for F(1,2), this leads to the Gorkov equations, encompassing the Bardeen–Cooper–Schrieffer (BCS) energy gap, critical temperature, and Bogoliubov-de Gennes eigenfunction Bogoliubons. Superconductor thermodynamics and critical magnetic field are discussed. For a weak magnetic field, the Gorkov-equations lead to Ginzburg–Landau theory and a nonlinear Schrödinger-like equation for the pair wave function and the associated supercurrent, along with identification of the Cooper pair density. Furthermore, Chapter 13 addresses the apparent lack of gauge invariance of London theory with an elegant variational analysis involving re-gauging the potentials, yielding a manifestly gauge invariant generalization of the London equation. Consistency with the equation of continuity implies the existence of Anderson’s acoustic normal mode, which is supplanted by the plasmon for Coulomb interaction. Type II superconductors and the penetration (and interaction) of quantized magnetic flux lines are also discussed. Finally, Chapter 13 addresses Josephson tunneling between superconductors.


Sign in / Sign up

Export Citation Format

Share Document