The Bakerian Lecture, 1968 - Review of recent developments in cosmology

It is hard to believe today that most scientists in the year 1920 believed that our Galaxy was all there is to the whole Universe—the ‘island Universe’ as it was then called. The difference between our present day view, with all its subtle complexities, and such a primitive notion has been brought about very largely by the accumulation of observational data. Almost immediately following the year 1920 Hubble disposed of the ‘island Universe’ concept and for the past fifty years astronomers have worked on the basis that our Galaxy is but one among thousands of millions strewn more or less uniformly throughout space. Although observation plays the key role in determining which ideas survive and which are rejected, ideas themselves frequently come from theoretical studies. Already in 1922 Friedmann discovered the theoretical models of the Universe which are now often described as the ‘big bang’ cosmologies. In this lecture I shall not be much concerned with these models, for the personal reason that I happen to be not very interested in them. But it is of relevance that I should explain to you why this is so.

1994 ◽  
Vol 159 ◽  
pp. 293-299
Author(s):  
G. Burbidge ◽  
F. Hoyle ◽  
J.V. Narlikar

The standard big bang cosmology has the universe created out of a primeval explosion that not only created matter and radiation but also spacetime itself. The big bang event itself cannot be discussed within the framework of a physical theory but the events following it are in principle considered within the scope of science. The recent developments on the frontier between particle physics and cosmology highlight the attempts to chart the history of the very early universe.


1986 ◽  
Vol 7 ◽  
pp. 27-38 ◽  
Author(s):  
Vera C. Rubin

Thirty years ago, observational cosmology consisted of the search for two numbers: Ho, the rate of expansion of the universe at the position of the Galaxy; and qo, the deceleration parameter. Twenty years ago, the discovery of the relic radiation from the Big Bang produced another number, 3oK. But it is the past decade which has seen the enormous development in both observational and theoretical cosmology. The universe is known to be immeasurably richer and more varied than we had thought. There is growing acceptance of a universe in which most of the matter is not luminous. Nature has played a trick on astronomers, for we thought we were studying the universe. We now know that we were studying only the small fraction of it that is luminous. I suspect that this talk this evening is the first IAU Discourse devoted to something that astronomers cannot see at any wavelength: Dark Matter in the Universe.


1990 ◽  
Vol 123 ◽  
pp. 543-550
Author(s):  
Menas Kafatos

AbstractUnlike the usual situation with theoretical physics which is testable in the laboratory, in cosmological theories of the universe one faces the following problems: The observer is part of the system, the universe, and this system cannot be altered to test physical theory. Even though one can in principle consider any part of the observable universe as separate from the acts of observation, the very hypothesis of big bang implies that in the distant past, space-time regions containing current observers were part of the same system. One, therefore, faces a situation where the observer has to be considered as inherently a part of the entire system. The existence of horizons of knowledge in any cosmological view of the universe is then tantamount to inherent observational limits imposed by acts of observation and theory itself. For example, in the big bang cosmology the universe becomes opaque to radiation early on, and the images of extended distant galaxies merge for redshifts, z, of the order of a few. Moreover, in order to measure the distance of a remote galaxy to test any cosmological theory, one has to disperse its light to form a spectrum which would cause confusion with other background galaxies. Since the early universe should be described in quantum terms, it follows that the same problems regarding quantum reality and the role of the observer apply to the universe as a whole. One of the most fundamental properties of quantum theory, non-locality, may then apply equally well to the universe. Some of the problems facing big bang cosmology, like the horizon and flatness problems, may not then be preconditions on theoretical models but may instead be the manifestations of the quantum nature of the universe.


Author(s):  
Max Pettini

Astronomers now have at their disposal telescopes and instruments that allow them to look back in time over most of the history of the Universe, from the present epoch to less than a billion years after the Big Bang, when the Universe was still in its infancy. Using quasars (the bright nuclei of distant galaxies) as background sources of light, we can follow the evolution of galaxies and of the matter between them from the First Stars to the rich diversity of the Universe today. In this article, I focus on recent developments in the study of the most metal-poor gas seen in the spectra of quasars, whose properties can be used to infer the nature of the First Stars and, in some cases, even determine the universal fraction of baryons.


2009 ◽  
Vol 5 (S260) ◽  
pp. 33-38
Author(s):  
Lawrence M. Krauss

AbstractCosmological discoveries over the past century have completely changed our picture of our place in the universe. New observations have a realistic chance of probing nature on heretofore unimaginable scales, and as a result are changing the nature of fundamental science. Perhaps no other domain of science has an equal capacity to completely change our perspective of the world in which we live.


2016 ◽  
Vol 6 (9) ◽  
pp. 217-222
Author(s):  
K. Sinyagina

This article considers the key-ideas for modern scientific understanding of the origin and evolution of the Universe. George Gamow is one of the first scientists to create the theory of the Big Bang the theory of great explosion. Gamow is a famous physicist who came from the city of Odessa (Ukraine) andgot interested in the origin of chemical elements. He suggested that in the past of the Universe before it had been created by the «Big Bang» (the theory of great explosion), the Universe had had much more substantial density and higher temperature than now. He was the first person to focus on unique properties of the Universe and to suggest existence of cosmic microwave background (CMB). The following disclosure of the CMB started the era of modern cosmology.


2020 ◽  
Vol 3 (4) ◽  
pp. 203-218
Author(s):  
A.E. Razumov ◽  

The last century is filled with victories and failures, passions, and interests. World wars and revolutions, the change of political regimes, ideologies, and ideological orientations — all this provoked a formation of social and political chaos, which sometimes had to be overcome in a totalitarian way through sole commanding and by one-party dictatorship. At the same time, one can observe the successes of cognition, culture, scientific and technological development, which, however, can hardly be called “progress”. Because the mass destruction weapons of certain “partners” in globalism have also been increased. Ready for self-destruction, “man in time” did not become yet the master of his destiny in the last century, but in many ways remained a mystery to himself. Despite the fact that over the past century man has learned a lot about his own psychology, consciousness and subconscious, he still needs further self-knowledge no less than in those times when the Oracle of Delphi called for it. Today, as ancient times, one needs to know better what motivates his sometimes rational, and sometimes, mildly speaking, very strange behavior. Who is man in time? To understand this, one must go beyond the limits of itself being to other times and spaces. Even to times and spaces of a cosmic scale, to the spaces and to the depths of our Universe, where a man was born and will disappear, perhaps preserved in its cosmic memory. The memory of the Universe is symbolized by world constants that arose as a result of the Big Bang and the birth of the Universe from a singularity point. Memory of man inherits this property of the Cosmos. The memory is a system-forming factor that creates man and its world. This is what rigorous science can offer to explain the cosmic origin of man and his memory. Artistic imagery can continue the efforts of science. Culture, literature, first of all, can create imageries that will tell about man and his time more than abstract theory. The imageries will tell that man has not yet lost his freedom of creativity. He must remember the past, live in the present, look and go to the future.


2006 ◽  
Vol 190 ◽  
pp. 15-15
Author(s):  
D CASTELVECCHI
Keyword(s):  
Big Bang ◽  

Author(s):  
Nicholas Mee

The Cosmic Mystery Tour is a brief account of modern physics and astronomy presented in a broad historical and cultural context. The book is attractively illustrated and aimed at the general reader. Part I explores the laws of physics including general relativity, the structure of matter, quantum mechanics and the Standard Model of particle physics. It discusses recent discoveries such as gravitational waves and the project to construct LISA, a space-based gravitational wave detector, as well as unresolved issues such as the nature of dark matter. Part II begins by considering cosmology, the study of the universe as a whole and how we arrived at the theory of the Big Bang and the expanding universe. It looks at the remarkable objects within the universe such as red giants, white dwarfs, neutron stars and black holes, and considers the expected discoveries from new telescopes such as the Extremely Large Telescope in Chile, and the Event Horizon Telescope, currently aiming to image the supermassive black hole at the galactic centre. Part III considers the possibility of finding extraterrestrial life, from the speculations of science fiction authors to the ongoing search for alien civilizations known as SETI. Recent developments are discussed: space probes to the satellites of Jupiter and Saturn; the discovery of planets in other star systems; the citizen science project SETI@Home; Breakthrough Starshot, the project to develop technologies to send spacecraft to the stars. It also discusses the Fermi paradox which argues that we might actually be alone in the cosmos


Author(s):  
Jan Zalasiewicz

This is the story of a single pebble. It is just a normal pebble, as you might pick up on holiday - on a beach in Wales, say. Its history, though, carries us into abyssal depths of time, and across the farthest reaches of space. This is a narrative of the Earth's long and dramatic history, as gleaned from a single pebble. It begins as the pebble-particles form amid unimaginable violence in distal realms of the Universe, in the Big Bang and in supernova explosions and continues amid the construction of the Solar System. Jan Zalasiewicz shows the almost incredible complexity present in such a small and apparently mundane object. Many events in the Earth's ancient past can be deciphered from a pebble: volcanic eruptions; the lives and deaths of extinct animals and plants; the alien nature of long-vanished oceans; and transformations deep underground, including the creations of fool's gold and of oil. Zalasiewicz demonstrates how geologists reach deep into the Earth's past by forensic analysis of even the tiniest amounts of mineral matter. Many stories are crammed into each and every pebble around us. It may be small, and ordinary, this pebble - but it is also an eloquent part of our Earth's extraordinary, never-ending story.


Sign in / Sign up

Export Citation Format

Share Document