scholarly journals Estimate of theoretical shear strength of C60 single crystal by nanoindentation

2021 ◽  
Vol 56 (18) ◽  
pp. 10905-10914
Author(s):  
Sergey N. Dub ◽  
Cetin Haftaoglu ◽  
Vitaliy M. Kindrachuk

AbstractThe onset of plasticity in a single crystal C60 fullerite was investigated by nanoindentation on the (111) crystallographic plane. The transition from elastic to plastic deformation in a contact was observed as pop-in events on loading curves. The respective resolved shear stresses were computed for the octahedral slip systems $$\langle{01}\overline{1}\rangle\left\{ {{111}} \right\}$$ ⟨ 01 1 ¯ ⟩ 111 , supposing that their activation resulted in the onset of plasticity. A finite element analysis was applied, which reproduced the elastic loading until the first pop-in, using a realistic geometry of the Berkovich indenter blunt tip. The obtained estimate of the C60 theoretical shear strength was about $${1}/{11}$$ 1 / 11 of the shear modulus on {111} planes. Graphical abstract

Author(s):  
Shadab Siddiqui ◽  
Nagaraj K. Arakere ◽  
Fereshteh Ebrahimi

A comprehensive numerical investigation of plasticity (slip) evolution near notches was conducted at 28°C and 927°C, for two crystallographic orientations of double-notched single crystal nickel base superalloys (SCNBS) specimens. The two specimens have a common loading orientation of <001> and have notches parallel to the <010> (specimen I) and <110> (specimen II) orientation, respectively. A three dimensional anisotropic linear elastic finite element model was employed to calculate the stress field near the notch of these samples. Resolved shear stress values were obtained near the notch for the primary octahedral slip systems ({111} <110>) and cube slip systems ({100} <110>). The effect of temperature was incorporated in the model as changes in the elastic modulus values and the critical resolved shear stress (CRSS). The results suggest that the number of dominant slip systems (slip systems with the highest resolved shear stress) and the size and the shape of the plastic zones around the notch are both functions of the orientation as well as the test temperature. A comparison between the absolute values of resolved shear stresses near the notch at 28°C and 927°C on the {111} slip planes revealed that the plastic zone size and the number of activated dominant slip systems are not significantly affected by the temperature dependency of the elastic properties of the SCNBS, but rather by the change in critical resolved shear stress of this material with temperature. The load required to initiate slip was found to be lower in specimen II than in specimen I at both temperatures. Furthermore, at 927°C the maximum resolved shear stress (RSS) on the notch surface was found to be greater on the {100} slip planes as compared with the {111} slip planes in both specimens. The results from this study will be helpful in understanding the slip evolution in SCNBS at high temperatures.


Author(s):  
Shadab Siddiqui ◽  
Nagaraj K. Arakere ◽  
Fereshteh Ebrahimi

Deformation mechanisms and failure modes of FCC (face centered cubic) single crystal components subjected to triaxial states of static and fatigue stress are very complicated to predict, because plasticity precedes fracture in regions of stress concentration, and the evolution of plasticity on the surface and through the thickness is influenced by elastic and plastic anisotropy. The triaxial stress state at regions of stress concentration results in the activation of many slip systems that otherwise would not be activated during uniaxial testing. We recently presented [1] results from a numerical and experimental investigation of evolution of slip systems at the surface of notched FCC single crystal specimens, as a function of secondary crystallographic orientation. Results showed that the slip sector boundaries have complex curved shapes with several slip systems active simultaneously near the notch. We extend our work on slip at the surface to investigating the evolution of slip or plastic deformation through the thickness of the specimen. A single crystal double-edge-notched rectangular specimen of a Ni-base superalloy, under the tensile loading ([001] load orientation and [110] notch direction) is considered. A three dimensional (3-D) finite element model (FEM) including elastic anisotropy is used for the numerical investigation. Results indicate that the stress distribution and slip fields are a strong function of axial location through the thickness. Numerical results are verified by comparing them with experimentally observed slip fields. We demonstrate that inclusion of three dimensional analysis and elastic anisotropy is important for predicting evolution of slip at the surface and through the specimen thickness. The resolved shear stresses (RSS) on the dominant slip systems and the normal stress on the dominant planes are shown to vary significantly from the surface to the midplane of the specimen. Based on the consideration of RSS, normal stress and the number of activated slip systems at each thickness level, it is concluded that fatigue cracks most likely start in the midplane, for the orientation reported here.


2009 ◽  
Vol 24 (3) ◽  
pp. 1059-1068 ◽  
Author(s):  
Li Ma ◽  
Dylan J. Morris ◽  
Stefhanni L. Jennerjohn ◽  
David F. Bahr ◽  
Lyle Levine

Sudden displacement excursions during load-controlled nanoindentation of relatively dislocation-free surfaces of metals are frequently associated with dislocation nucleation, multiplication, and propagation. Insight into the nanomechanical origins of plasticity in metallic crystals may be gained through estimation of the stresses that nucleate dislocations. An assessment of the potential errors in the experimental measurement of nucleation stresses, especially in materials that exhibit the elastic–plastic transition at small indentation depths, is critical. In this work, the near-apex shape of a Berkovich probe was measured by scanning probe microscopy. This shape was then used as a “virtual” indentation probe in a 3-dimensional finite element analysis (FEA) of indentation on 〈100〉-oriented single-crystal tungsten. Simultaneously, experiments were carried out with the real indenter, also on 〈100〉-oriented single-crystal tungsten. There is good agreement between the FEA and experimental load–displacement curves. The Hertzian estimate of the radius of curvature was significantly larger than that directly measured from the scanning probe experiments. This effect was replicated in FEA simulation of indentation by a sphere. These results suggest that Hertzian estimates of the maximum shear stresses in the target material at the point of dislocation nucleation are a conservative lower bound. Stress estimates obtained from the experimental data using the Hertzian approximation were over 30% smaller than those determined from FEA.


Author(s):  
F. P. E. Dunne ◽  
R. Kiwanuka ◽  
A. J. Wilkinson

A gradient-enhanced crystal plasticity model is presented that explicitly accounts for the evolution of the densities of geometrically necessary dislocations (GNDs) on individual slip systems of deforming crystals. The GND densities are fully coupled with the crystal slip rule. Application of the model to two distinct and technologically important crystal types, namely hcp Ti and ccp Ni, is given. For the hcp crystals, slip is permitted with a -type slip directions on basal, prismatic and pyramidal planes and c + a -type slip directions on pyramidal planes. First, a single crystal under four-point bending is simulated as the uniform strain gradient expected in the central span provides a good validation of the code. Then, uniaxial deformation of a model near- α Ti polycrystal has been analysed. The resulting distributions of GND densities that develop on the various slip system types have been compared with independent experimental observations. The model predicts that GND density on the c + a systems is approximately an order of magnitude lower than that for a -type systems in agreement with experiment. For the ccp case, slip is considered to take place on the <110>{111} slip systems. Thermal loading of a single-crystal nickel alloy sample containing carbide particles of size approximately 30 μm has been analysed. Detailed comparisons are presented between model predictions and results of high-resolution electron backscatter diffraction (EBSD) measurements of the micro-deformations, lattice rotations, curvatures and GND densities local to the nickel–carbide interface. Qualitatively, good agreement is achieved between the coupled and decoupled model elastic strains with the EBSD measurements, but lattice rotations and GND densities are quantitatively well predicted by the coupled crystal model but are less well captured by the decoupled model. The GND coupling is found to lead to reduced lattice rotations and plastic strains in the region of highest heterogeneity close to the Ni matrix/particle interface, which is in agreement with the experimental measurements. The results presented provide objective evidence of the effectiveness of gradient-enhanced crystal plasticity finite element analysis and demonstrate that GND coupling is required in order to capture strains and lattice rotations in regions of high heterogeneity.


1997 ◽  
Vol 12 (12) ◽  
pp. 3345-3353 ◽  
Author(s):  
D. F. Bahr ◽  
J. C. Nelson ◽  
N. I. Tymiak ◽  
W. W. Gerberich

Continuous microindentation has been carried out on an iron–3% silicon single crystal in 1 M sulfuric acid. The ability of the material to support elastic loading is directly linked to the presence of thermally grown oxide films and passive films applied through potentiostatic control of the sample. When the passive film is removed, either by chemical or electrochemical means, the iron alloy can no longer sustain pressures on the order of the theoretical shear strength of iron. Instead, the metal behaves in a traditional elastic-plastic manner when no film is present. The oxide film at the edges of the indentation can sustain applied tensile stresses up to 1.2 GPa prior to failure. Indentation in materials undergoing dissolution must account for the rate of material removal over the remote surface and the resulting plastic deformation around the contact of the indentation.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Michel G. Darrieulat ◽  
Asdin Aoufi

The present article addresses the following question: How is it that shears are so common in the plastic deformation of metallic alloys? An answer is sought in a geometric description of the shear flow when the deformation is produced by slip systems gliding according to the Schmid law. Such flows are represented schematically by what is called “simple shear” and a kinematic study is done of the way these shears can be produced by the joint activity of various slip systems. This implies specific conditions on the glide rates, which can be known analytically thanks to adequate parametrizations. All the possible shears have been calculated in the case of cubic metals deforming with identical critical resolved shear stresses (Bishop and Hill polyhedron). Three dimensional representations are given in the space of the Bunge angles associated with the principal directions of the shears. A special attention has been given to the number of slip systems involved. Most of the shears are not far from some combination of two or three systems. This is quantified by defining the misorientation ω between a shear taken at random and the set of shears produced by the glide on two or three octahedral slip systems. It is found that in most cases, ω<15 deg. The maximum value of ω (30.5 deg) is found for the orientations called Cube and U in rolled metals.


2011 ◽  
Vol 197-198 ◽  
pp. 1381-1388 ◽  
Author(s):  
Qing Wu Wang ◽  
Mao Pang ◽  
Shi Hui Zhang

Single crystal nickel base superalloys, such as Chinese material DD6 have been used in gas turbine blade in China more and more widely. In order to make better use of single crystal superalloys with many excellencies, constitutive models have been developed. In this paper, general method of crystallographic constitutive modeling was summarizes and a new constitutive model, based on crystallographic theory was proposed with phenomenological models' advantages. Based on crystallographic slip system principle, the basic slip-based viscoplasticity theory equations were set up on 12 octahedral slip systems and 6 cubic slip systems, total 18 slip systems. In micro-level slip system, the general unified constitutive formulations were used as the flow equations and hardening law. In the model, scalar forms were applied for constitutive equations on slip systems and the number and types of active slip systems were used to describe the material anisotropy, which was satisfied automatically by slip systems not anisotropic tensors and. The experimental and calculation results of two kind single crystal superalloys PWA1480 and DD6 were compared. The model had the capability to predict many mechanical response and analyze structure of single crystal superalloys. The modeling procedures and results showed that this crystallographic model had more clear physical meaning and was exact.


2005 ◽  
Vol 297-300 ◽  
pp. 1265-1269
Author(s):  
Hong Gun Kim

The shortcoming of conventional SLT (Shear Lag Theory) is due to the neglect of stress transfer across the fiber ends, which results in the inaccurate stress variation for the fiber when the fiber aspect ratio is small in elastic loading. Thus a new model called NSLT (New Shear Lag Theory) is developed considering the stress concentration effects that exists in the matrix regions near fiber ends. In this paper the prediction of elastic composite modulus is presented to evaluate the stress transfer mechanism using NSLT. A micromechanical FEA (Finite Element Analysis) model with axisymmetry is implemented to verify the results of fiber stresses and interfacial shear stresses. It is found that the proposed model gives a reasonable prediction compared with the results based on other models.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


Sign in / Sign up

Export Citation Format

Share Document