The direct synthesis of phospho enol pyruvate from pyruvate by Escherichia coli

1967 ◽  
Vol 168 (1012) ◽  
pp. 263-280 ◽  

Extracts of Escherichia coli are shown to contain an enzyme system which in the presence of Mg 2+ catalyses the direct formation of phospho enol pyruvate from pyruvate and ATP with concomitant formation of AMP and inorganic phosphate. This enzyme, which has been designated 'phospho enol pyruvate synthase' ( PEP -synthase) has been purified 80-fold and is free of pyruvate kinase activity; PEP synthesis proceeded most rapidly at pH 8 to 8.5. At pH values between 6.2 and 7.5 the enzyme can catalyse the formation of ATP and pyruvate from PEP , AMP and inorganic phosphate; if arsenate is used instead of phosphate, pyruvate and ADP are produced instead. Studies of the enzymic formation of PEP with ATP specifically labelled with 32 P, and of the reverse reaction with [U -14 C] AMP , suggest that the PEP -synthase reaction involves the transfer of a pyrophosphoryl-group. The physiological role of PEP -synthase has been demonstrated with mutants of E. coli devoid of the enzyme: in contrast to wild-type organisms, such mutants neither grow on pyruvate, lactate or alanine, nor form glycogen from lactate. It is thus concluded that PEP -synthase plays an important role in the anaplerotic and the biosynthetic reactions which enable the organisms to grow on pyruvate as sole carbon source.

2011 ◽  
Vol 31 (3) ◽  
pp. 179-184 ◽  
Author(s):  
Syuzanna Blbulyan ◽  
Arev Avagyan ◽  
Anna Poladyan ◽  
Armen Trchounian

Escherichia coli is able to ferment glycerol and produce H2 by different Hyds (hydrogenases). Wild-type whole cells were shown to extrude H+ through the F1Fo-ATPase and by other means with a lower rate compared with that under glucose fermentation. At pH 7.5, H+ efflux was stimulated in fhlA mutant (with defective transcriptional activator of Hyd-3 or Hyd-4) and was lowered in hyaB or hybC mutants (with defective Hyd-1 or Hyd-2) and hyaB hybC double mutant; DCCD (dicyclohexylcarbodi-imide)-sensitive H+ efflux was observed. At pH 5.5, H+ efflux in wild-type was lower compared with that at pH 7.5; it was increased in fhlA mutant and absent in hyaB hybC mutant. Membrane vesicle ATPase activity was lower in wild-type glycerol-fermented cells at pH 7.5 compared with that in glucose-fermented cells; 100 mM K+ did not stimulate ATPase activity. The latter at pH 7.5, compared with that in wild–type, was lower in hyaB and less in hybC mutants, stimulated in the hyaB hybC mutant and suppressed in the fhlA mutant; DCCD inhibited ATPase activity. At pH 5.5, the ATPase activities of hyaB and hybC mutants had similar values and were higher compared with that in wild-type; ATPase activity was suppressed in hyaB hybC and fhlA mutants. The results indicate that during glycerol fermentation, H+ was expelled also via F1Fo. At pH 7.5 Hyd-1 and Hyd-2 but not FhlA or Hyd-4 might be related to F1Fo or have their own H+-translocating ability. At pH 5.5, both Hyd-1 and Hyd-2 more than F1Fo might be involved in H+ efflux.


2007 ◽  
Vol 179 (2) ◽  
pp. 255-267 ◽  
Author(s):  
Karthik Jeganathan ◽  
Liviu Malureanu ◽  
Darren J. Baker ◽  
Susan C. Abraham ◽  
Jan M. van Deursen

The physiological role of the mitotic checkpoint protein Bub1 is unknown. To study this role, we generated a series of mutant mice with a gradient of reduced Bub1 expression using wild-type, hypomorphic, and knockout alleles. Bub1 hypomorphic mice are viable, fertile, and overtly normal despite weakened mitotic checkpoint activity and high percentages of aneuploid cells. Bub1 haploinsufficient mice, which have a milder reduction in Bub1 protein than Bub1 hypomorphic mice, also exhibit reduced checkpoint activity and increased aneuploidy, but to a lesser extent. Although cells from Bub1 hypomorphic and haploinsufficient mice have similar rates of chromosome missegregation, cell death after an aberrant separation decreases dramatically with declining Bub1 levels. Importantly, Bub1 hypomorphic mice are highly susceptible to spontaneous tumors, whereas Bub1 haploinsufficient mice are not. These findings demonstrate that loss of Bub1 below a critical threshold drives spontaneous tumorigenesis and suggest that in addition to ensuring proper chromosome segregation, Bub1 is important for mediating cell death when chromosomes missegregate.


2015 ◽  
Vol 84 (1) ◽  
pp. 187-193 ◽  
Author(s):  
Renu Verma ◽  
Thaís Cabrera Galvão Rojas ◽  
Renato Pariz Maluta ◽  
Janaína Luisa Leite ◽  
Livia Pilatti Mendes da Silva ◽  
...  

The extraintestinal pathogen termed avian pathogenicEscherichia coli(APEC) is known to cause colibacillosis in chickens. The molecular basis of APEC pathogenesis is not fully elucidated yet. In this work, we deleted a component of the Yad gene cluster (yadC) in order to understand the role of Yad in the pathogenicity of the APEC strain SCI-07.In vitro, the transcription level ofyadCwas upregulated at 41°C and downregulated at 22°C. TheyadCexpressionin vivowas more pronounced in lungs than in spleen, suggesting a role in the early steps of the infection. Chicks infected with the wild-type and mutant strains presented, respectively, 80% and 50% mortality rates. The ΔyadCstrain presented a slightly decreased ability to adhere to HeLa cells with or without thed-mannose analog compared with the wild type. Real-time PCR (RT-PCR) assays showed thatfimHwas downregulated (P< 0.05) andcsgAandecpAwere slightly upregulated in the mutant strain, showing thatyadCmodulates expression of other fimbriae. Bacterial internalization studies showed that the ΔyadCstrain had a lower number of intracellular bacteria recovered from Hep-2 cells and HD11 cells than the wild-type strain (P< 0.05). Motility assays in soft agar demonstrated that the ΔyadCstrain was less motile than the wild type (P< 0.01). Curiously, flagellum-associated genes were not dramatically downregulated in the ΔyadCstrain. Taken together, the results show that the fimbrial adhesin Yad contributes to the pathogenicity and modulates different biological characteristics of the APEC strain SCI-07.


Microbiology ◽  
2006 ◽  
Vol 152 (6) ◽  
pp. 1741-1750 ◽  
Author(s):  
Renjith Mathew ◽  
Raju Mukherjee ◽  
Radhakrishnan Balachandar ◽  
Dipankar Chatterji

The ω subunit, the smallest subunit of bacterial RNA polymerase, is known to be involved in maintaining the conformation of the β′ subunit and aiding its recruitment to the rest of the core enzyme assembly in Escherichia coli. It has recently been shown in Mycobacterium smegmatis, by creating a deletion mutation of the rpoZ gene encoding ω, that the physiological role of the ω subunit also includes providing physical protection to β′. Interestingly, the mutant had altered colony morphology. This paper demonstrates that the mutant mycobacterium has pleiotropic phenotypes including reduced sliding motility and defective biofilm formation. Analysis of the spatial arrangement of biofilms by electron microscopy suggests that the altered phenotype of the mutant arises from a deficiency in generation of extracellular matrix. Complementation of the mutant strain with a copy of the wild-type rpoZ gene integrated in the bacterial chromosome restored both sliding motility and biofilm formation to the wild-type state, unequivocally proving the role of ω in the characteristics observed for the mutant bacterium. Analysis of the cell wall composition demonstrated that the mutant bacterium had an identical glycopeptidolipid profile to the wild-type, but failed to synthesize the short-chain mycolic acids characteristic of biofilm growth in M. smegmatis.


2008 ◽  
Vol 190 (18) ◽  
pp. 6170-6177 ◽  
Author(s):  
Linda D. Rankin ◽  
Diane M. Bodenmiller ◽  
Jonathan D. Partridge ◽  
Shirley F. Nishino ◽  
Jim C. Spain ◽  
...  

ABSTRACT Chromatin immunoprecipitation and microarray (ChIP-chip) analysis showed that the nitric oxide (NO)-sensitive repressor NsrR from Escherichia coli binds in vivo to the promoters of the tynA and feaB genes. These genes encode the first two enzymes of a pathway that is required for the catabolism of phenylethylamine (PEA) and its hydroxylated derivatives tyramine and dopamine. Deletion of nsrR caused small increases in the activities of the tynA and feaB promoters in cultures grown on PEA. Overexpression of nsrR severely retarded growth on PEA and caused a marked repression of the tynA and feaB promoters. Both the growth defect and the promoter repression were reversed in the presence of a source of NO. These results are consistent with NsrR mediating repression of the tynA and feaB genes by binding (in an NO-sensitive fashion) to the sites identified by ChIP-chip. E. coli was shown to use 3-nitrotyramine as a nitrogen source for growth, conditions which partially induce the tynA and feaB promoters. Mutation of tynA (but not feaB) prevented growth on 3-nitrotyramine. Growth yields, mutant phenotypes, and analyses of culture supernatants suggested that 3-nitrotyramine is oxidized to 4-hydroxy-3-nitrophenylacetate, with growth occurring at the expense of the amino group of 3-nitrotyramine. Accordingly, enzyme assays showed that 3-nitrotyramine and its oxidation product (4-hydroxy-3-nitrophenylacetaldehyde) could be oxidized by the enzymes encoded by tynA and feaB, respectively. The results suggest that an additional physiological role of the PEA catabolic pathway is to metabolize nitroaromatic compounds that may accumulate in cells exposed to NO.


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 774
Author(s):  
Virginio Cepas ◽  
Victoria Ballén ◽  
Yaiza Gabasa ◽  
Miriam Ramírez ◽  
Yuly López ◽  
...  

Current Escherichia coli antibiofilm treatments comprise a combination of antibiotics commonly used against planktonic cells, leading to treatment failure. A better understanding of the genes involved in biofilm formation could facilitate the development of efficient and specific new antibiofilm treatments. A total of 2578 E. coli mutants were generated by transposon insertion, of which 536 were analysed in this study. After sequencing, Tn263 mutant, classified as low biofilm-former (LF) compared to the wild-type (wt) strain (ATCC 25922), showed an interruption in the purL gene, involved in the de novo purine biosynthesis pathway. To elucidate the role of purL in biofilm formation, a knockout was generated showing reduced production of curli fibres, leading to an impaired biofilm formation. These conditions were restored by complementation of the strain or addition of exogenous inosine. Proteomic and transcriptional analyses were performed to characterise the differences caused by purL alterations. Thirteen proteins were altered compared to wt. The corresponding genes were analysed by qRT-PCR not only in the Tn263 and wt, but also in clinical strains with different biofilm activity. Overall, this study suggests that purL is essential for biofilm formation in E. coli and can be considered as a potential antibiofilm target.


2002 ◽  
Vol 184 (10) ◽  
pp. 2850-2853 ◽  
Author(s):  
Annie Conter ◽  
Rachel Sturny ◽  
Claude Gutierrez ◽  
Kaymeuang Cam

ABSTRACT The RcsCB His-Asp phosphorelay system regulates the expression of several genes of Escherichia coli, but the molecular nature of the inducing signal is still unknown. We show here that treatment of an exponentially growing culture of E. coli with the cationic amphipathic compound chlorpromazine (CPZ) stimulates expression of a set of genes positively regulated by the RcsCB system. This induction is abolished in rcsB or rcsC mutant strains. In addition, treatment with CPZ inhibits growth. The wild-type strain is able to recover from this inhibition and resume growth after a period of adaptation. In contrast, strains deficient in the RcsCB His-Asp phosphorelay system are hypersensitive to CPZ. These results suggest that cells must express specific RcsCB-regulated genes in order to cope with the CPZ-induced stress. This is the first report of the essential role of the RcsCB system in a stress situation. These results also strengthen the notion that alterations of the cell envelope induce a signal recognized by the RcsC sensor.


2007 ◽  
Vol 75 (7) ◽  
pp. 3315-3324 ◽  
Author(s):  
Eric J. Gauger ◽  
Mary P. Leatham ◽  
Regino Mercado-Lubo ◽  
David C. Laux ◽  
Tyrrell Conway ◽  
...  

ABSTRACT Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD4C2. Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD4C2 but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth.


2009 ◽  
Vol 47 (5) ◽  
pp. 657-662 ◽  
Author(s):  
Xueqiao Liu ◽  
Gabriela R. Peña Sandoval ◽  
Barry L. Wanner ◽  
Won Seok Jung ◽  
Dimitris Georgellis ◽  
...  

2004 ◽  
Vol 24 (14) ◽  
pp. 6403-6409 ◽  
Author(s):  
Michael M. Schuendeln ◽  
Roland P. Piekorz ◽  
Christian Wichmann ◽  
Youngsoo Lee ◽  
Peter J. McKinnon ◽  
...  

ABSTRACT TACC2 is a member of the transforming acidic coiled-coil-containing protein family and is associated with the centrosome-spindle apparatus during cell cycling. In vivo, the TACC2 gene is expressed in various splice forms predominantly in postmitotic tissues, including heart, muscle, kidney, and brain. Studies of human breast cancer samples and cell lines suggest a putative role of TACC2 as a tumor suppressor protein. To analyze the physiological role of TACC2, we generated mice lacking TACC2. TACC2-deficient mice are viable, develop normally, are fertile, and lack phenotypic changes compared to wild-type mice. Furthermore, TACC2 deficiency does not lead to an increased incidence of tumor development. Finally, in TACC2-deficient embryonic fibroblasts, proliferation and cell cycle progression as well as centrosome numbers are comparable to those in wild-type cells. Therefore, TACC2 is not required, nonredundantly, for mouse development and normal cell proliferation and is not a tumor suppressor protein.


Sign in / Sign up

Export Citation Format

Share Document