Electrical properties of neurons recorded from the rat supraoptic nucleus in vitro

1983 ◽  
Vol 217 (1207) ◽  
pp. 141-161 ◽  

The electrical properties of neurons in the supraoptic nucleus (so.n.) have been studied in the hypothalamic slice preparation by intracellular and extracellular recording techniques, with Lucifer Yellow CH dye injection to mark the recording site as being the so. n. Intracellular recordings from so. n. neurons revealed them to have an average membrane potential of ─ 67±0.8 mV (mean±s. e. m.), membrane resistance of 145±9 MΩ with linear current–voltage relations from 40 mV in the hyperpolarizing direction to the level of spike threshold in the depolarizing direction. Average cell time constant was 14±2.2 ms. So. n. action potentials ranged in amplitude from 55 to 95 mV, with a mean of 76±2 mV, and a spike width of 2.6±0.5 ms at 30% of maximal spike height. Both single spikes and trains of spikes were followed by a strong, long-lasting hyperpolarization with a decay fitted by a single exponential having a time constant of 8.6±1.8 ms. Action potentials could be blocked by 10 -6 m tetrodotoxin. Spontaneously active so. n. neurons were characterized by synaptic input in the form of excitatory and inhibitory postsynaptic potentials, the latter being apparently blocked when 4 m KCI electrodes were used. Both forms of synaptic activity were blocked by application of divalent cations such as Mg 2+ , Mn 2+ or Co 2+ . 74% of so. n. neurons fired spontaneously at rates exceeding 0.1 spikes per second, with a mean for all cells of 2.9±0.2 s -1 . Of these cells, 21% fired slowly and continuously at 0.1─1.0 s -1 , 45 % fired continuously at greater than 1 Hz, and the remaining 34% fired phasically in bursts of activity followed by silence or low frequency firing. Spontaneously firing phasic cells showed a mean burst length of 16.7± 4.5 s and a silent period of 28.2±4.2 s. Intracellular recordings revealed the presence of slow variations in membrane potential which modified the neuron’s proximity to spike threshold, and controlled phasic firing. Variations in synaptic input were not observed to influence firing in phasic cells.

1985 ◽  
Vol 54 (6) ◽  
pp. 1375-1382 ◽  
Author(s):  
C. W. Bourque ◽  
J. C. Randle ◽  
L. P. Renaud

Intracellular recordings of rat supraoptic nucleus neurons were obtained from perfused hypothalamic explants. Individual action potentials were followed by hyperpolarizing afterpotentials (HAPs) having a mean amplitude of -7.4 +/- 0.8 mV (SD). The decay of the HAP was approximated by a single exponential function having a mean time constant of 17.5 +/- 6.1 ms. This considerably exceeded the cell time constant of the same neurons (9.5 +/- 0.8 ms), thus indicating that the ionic conductance underlying the HAP persisted briefly after each spike. The HAP had a reversal potential of -85 mV and was unaffected by intracellular Cl- ionophoresis of during exposure to elevated extracellular concentrations of Mg2+. In contrast, the peak amplitude of the HAP was proportional to the extracellular Ca2+ concentration and could be reversibly eliminated by replacing Ca2+ with Co2+, Mn2+, or EGTA in the perfusion fluid. During depolarizing current pulses, evoked action potential trains demonstrated a progressive increase in interspike intervals associated with a potentiation of successive HAPs. This spike frequency adaptation was reversibly abolished by replacing Ca2+ with Co2+, Mn2+, or EGTA. Bursts of action potentials were followed by a more prolonged afterhyperpolarization (AHP) whose magnitude was proportional to the number of impulses elicited (greater than 20 Hz) during a burst. Current injection revealed that the AHP was associated with a 20-60% decrease in input resistance and showed little voltage dependence in the range of -70 to -120 mV. The reversal potential of the AHP shifted with the extracellular concentration of K+ [( K+]o) with a mean slope of -50 mV/log[K+]o.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
Christof Koch

This chapter represents somewhat of a tephnical interlude. Having introduced the reader to both simplified and more complex compartmental single neuron models, we need to revisit terrain with which we are already somewhat familiar. In the following pages we reevaluate two important concepts we defined in the first few chapters: the somatic input resistance and the neuronal time constant. For passive systems, both are simple enough variables: Rin is the change in somatic membrane potential in response to a small sustained current injection divided by the amplitude of the current injection, while τm is the slowest time constant associated with the exponential charging or discharging of the neuronal membrane in response to a current pulse or step. However, because neurons express nonstationary and nonlinear membrane conductances, the measurement and interpretation of these two variables in active structures is not as straightforward as before. Having obtained a more sophisticated understanding of these issues, we will turn toward the question of the existence of a current, voltage, or charge threshold at which a biophysical faithful model of a cell triggers action potentials. We conclude with recent work that suggests how concepts from the subthreshold domain, like the input resistance or the average membrane potential, could be extended to the case in which the cell is discharging a stream of action potentials. This chapter is mainly for the cognoscendi or for those of us that need to make sense of experimental data by comparing therp to theoretical models that usually fail to reflect reality adequately. In Sec. 3.4, we defined Kii (f) for passive cable structures as the voltage change at location i in response to a sinusoidal current injection of frequency f at the same location. Its dc component is also referred to as input resistance or Rin. Three difficulties render this definition of input resistance problematic in real cells: (1) most membranes, in particular at the soma, show voltage-dependent nonlinearities, (2) the associated ionic membrane conductances are time dependent and (3) instrumental aspects, such as the effect of the impedance of the recording electrode on Rin, add uncertainty to the measuring process.


1997 ◽  
Vol 77 (4) ◽  
pp. 1697-1715 ◽  
Author(s):  
Edward A. Stern ◽  
Anthony E. Kincaid ◽  
Charles J. Wilson

Stern, Edward A., Anthony E. Kincaid, and Charles J. Wilson. Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 77: 1697–1715, 1997. We measured the timing of spontaneous membrane potential fluctuations and action potentials of medial and lateral agranular corticostriatal and striatal neurons with the use of in vivo intracellular recordings in urethan-anesthetized rats. All neurons showed spontaneous subthreshold membrane potential shifts from 7 to 32 mV in amplitude, fluctuating between a hyperpolarized down state and depolarized up state. Action potentials arose only during the up state. The membrane potential state transitions showed a weak periodicity with a peak frequency near 1 Hz. The peak of the frequency spectra was broad in all neurons, indicating that the membrane potential fluctuations were not dominated by a single periodic function. At frequencies >1 Hz, the log of magnitude decreased linearly with the log of frequency in all neurons. No serial dependence was found for up and down state durations, or for the time between successive up or down state transitions, showing that the up and down state transitions are not due to superimposition of noisy inputs onto a single frequency. Monte Carlo simulations of stochastic synaptic inputs to a uniform finite cylinder showed that the Fourier spectra obtained for corticostriatal and striatal neurons are inconsistent with a Poisson-like synaptic input, demonstrating that the up state is not due to an increase in the strength of an unpatterned synaptic input. Frequency components arising from state transitions were separated from those arising from the smaller membrane potential fluctuations within each state. A larger proportion of the total signal was represented by the fluctuations within states, especially in the up state, than was predicted by the simulations. The individual state spectra did not correspond to those of random synaptic inputs, but reproduced the spectra of the up and down state transitions. This suggests that the process causing the state transitions and the process responsible for synaptic input may be the same. A high-frequency periodic component in the up states was found in the majority of the corticostriatal cells in the sample. The average size of the component was not different between neurons injected with QX-314 and control neurons. The high-frequency component was not seen in any of our sample of striatal cells. Corticostriatal and striatal neurons' coefficients of variation of interspike intervals ranged from 1.0 to 1.9. When interspike intervals including a down state were subtracted from the calculation, the coefficient of variation ranged from 0.4 to 1.1, indicating that a substantial proportion of spike interval variance was due to the subthreshold membrane potential fluctuations.


2001 ◽  
Vol 86 (3) ◽  
pp. 1252-1265 ◽  
Author(s):  
Yu-Feng Wang ◽  
Xiao-Bing Gao ◽  
Anthony N. van den Pol

Spikes may play an important role in modulating a number of aspects of brain development. In early hypothalamic development, GABA can either evoke action potentials, or it can shunt other excitatory activity. In both slices and cultures of the mouse hypothalamus, we observed a heterogeneity of spike patterns and frequency in response to GABA. To examine the mechanisms underlying patterns and frequency of GABA-evoked spikes, we used conventional whole cell and gramicidin perforation recordings of neurons ( n = 282) in slices and cultures of developing mouse hypothalamus. Recorded with gramicidin pipettes, GABA application evoked action potentials in hypothalamic neurons in brain slices of postnatal day 2–9( P2- 9) mice. With conventional patch pipettes (containing 29 mM Cl−), action potentials were also elicited by GABA from neurons of 2–13 days in vitro (2–13 DIV) embryonic hypothalamic cultures. Depolarizing responses to GABA could be generally classified into three types: depolarization with no spike, a single spike, or complex patterns of multiple spikes. In parallel experiments in slices, electrical stimulation of GABAergic mediobasal hypothalamic neurons in the presence of glutamate receptor antagonists [10 μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 100 μM 2-amino-5-phosphonopentanoic acid (AP5)] resulted in the occurrence of spikes that were blocked by bicuculline (20 μM). Blocking ionotropic glutamate receptors with AP5 and CNQX did not block GABA-mediated multiple spikes. Similarly, when synaptic transmission was blocked with Cd2+ (200 μM) and Ni2+(300 μM), GABA still induced multiple spikes, suggesting that the multiple spikes can be an intrinsic membrane property of GABA excitation and were not based on local interneurons. When the pipette [Cl−] was 29 or 45 mM, GABA evoked multiple spikes. In contrast, spikes were not detected with 2 or 10 mM intracellular [Cl−]. With gramicidin pipettes, we found that the mean reversal potential of GABA-evoked current ( E GABA) was positive to the resting membrane potential, suggesting a high intracellular [Cl−] in developing mouse neurons. Varying the holding potential from −80 to 0 mV revealed an inverted U-shaped effect on spike probability. Blocking voltage-dependent Na+ channels with tetrodotoxin eliminated GABA-evoked spikes, but not the GABA-evoked depolarization. Removing Ca2+ from the extracellular solution did not block spikes, indicating GABA-evoked Na+-based spikes. Although E GABA was more positive within 2–5 days in culture, the probability of GABA-evoked spikes was greater in 6- to 9-day cells. Mechanistically, this appears to be due to a greater Na+ current found in the older cells during a period when the E GABA is still positive to the resting membrane potential. GABA evoked similar spike patterns in HEPES and bicarbonate buffers, suggesting that Cl−, not bicarbonate, was primarily responsible for generatingmultiple spikes. GABA evoked either single or multiple spikes; neurons with multiple spikes had a greater Na+ current, a lower conductance, a more negative spike threshold, and a greater difference between the peak of depolarization and the spike threshold. Taken together, the present results indicate that the patterns of multiple action potentials evoked by GABA are an inherent property of the developing hypothalamic neuron.


1997 ◽  
Vol 273 (6) ◽  
pp. G1273-G1289 ◽  
Author(s):  
Min-Tsai Liu ◽  
Annette L. Kirchgessner

The morphology, neurochemistry, and electrical properties of guinea pig pancreatic neurons were determined. The majority of neurons expressed choline acetyltransferase (ChAT) immunoreactivity; however, ChAT-negative neurons were also found. Both cholinergic and noncholinergic neurons expressed nitric oxide synthase (NOS) immunoreactivity. Three types of pancreatic neurons were distinguished. Phasic neurons fired action potentials (APs) at the onset of depolarizing current pulse, tonic neurons spiked throughout the duration of a suprathreshold depolarizing pulse, and APs could not be generated in nonspiking neurons, even though they did receive synaptic input. APs were tetrodotoxin sensitive, and all types of neurons received fast and slow excitatory postsynaptic potentials (EPSPs). Fast EPSPs had cholinergic and noncholinergic components. The majority of pancreatic neurons appeared to innervate the acini. NOS- and/or neuropeptide Y-immunoreactive phasic and tonic neurons were found. Microejection of 5-hydroxytryptamine (5-HT) caused a slow depolarization that was inhibited by the 5-HT1P antagonist N-acetyl-5-hydroxytryptophyl-5-hydroxytryptophan amide and mimicked by the 5-HT1Pagonist 6-hydroxyindalpine. A pancreatic 5-HT transporter was located, and inhibition of 5-HT uptake by fluoxetine blocked slow EPSPs in 5-HT-responsive neurons by receptor desensitization.


1990 ◽  
Vol 123 (1) ◽  
pp. 51-60 ◽  
Author(s):  
John S. du Pont

Abstract. Electrophysiological experiments show that T3 has a direct effect on the cell membrane of GH3 cells, a transformed line from the rat pituitary. Slope conductance versus membrane potential, resting membrane resistance, potential, capacity and action potentials were measured in this study. Using a current clamp technique, the effects of tetrodotoxin, tetraethylammonium, apamin, and nifedipine were measured and compared with those directly evoked by T3. T3 increased the slope conductance: 1. at around −60 mV, as did tetrodotoxin (Na+ channel blocker); 2. at about −40 mV, as did nifedipine (Ca2+ channel blocker), but decreased this conductance strongly between −20 and −30 mV, as did both nifedipine and apamin (Ca2+-sensitive K+ channel blocker). Action potentials were inhibited by T3 and by nifedipine. Action potentials in these cells are primarily related to Ca2+ ions. It seems that T3 inhibits the Ca2+ current and, as a consequence, the Ca2+-sensitive K+ current.


2013 ◽  
Vol 110 (4) ◽  
pp. 1021-1034 ◽  
Author(s):  
Rune W. Berg ◽  
Susanne Ditlevsen

When recording the membrane potential, V, of a neuron it is desirable to be able to extract the synaptic input. Critically, the synaptic input is stochastic and nonreproducible so one is therefore often restricted to single-trial data. Here, we introduce means of estimating the inhibition and excitation and their confidence limits from single sweep trials. The estimates are based on the mean membrane potential, V̄, and the membrane time constant, τ. The time constant provides the total conductance ( G = capacitance/τ) and is extracted from the autocorrelation of V. The synaptic conductances can then be inferred from V̄ when approximating the neuron as a single compartment. We further employ a stochastic model to establish limits of confidence. The method is verified on models and experimental data, where the synaptic input is manipulated pharmacologically or estimated by an alternative method. The method gives best results if the synaptic input is large compared with other conductances, the intrinsic conductances have little or no time dependence or are comparably small, the ligand-gated kinetics is faster than the membrane time constant, and the majority of synaptic contacts are electrotonically close to soma (recording site). Although our data are in current clamp, the method also works in V-clamp recordings, with some minor adaptations. All custom made procedures are provided in Matlab.


2001 ◽  
Vol 85 (2) ◽  
pp. 1013-1016 ◽  
Author(s):  
Enhui Pan ◽  
Costa M. Colbert

Back-propagating action potentials in CA1 pyramidal neurons may provide the postsynaptic dendritic depolarization necessary for the induction of long-term synaptic plasticity. The amplitudes of back-propagating action potentials are not all or none but are limited in amplitude by dendritic A-type K+ channels. Previous studies of back-propagating action potentials have suggested that prior depolarization of the dendritic membrane reduces A-type channel availability through inactivation, resulting in an enhanced, or boosted, dendritic action potential. However, inactivation kinetics in the subthreshold potential range have not been directly measured. Furthermore, the corresponding rates of Na+channel inactivation with depolarization have not been considered. Here we report in cell-attached patches (150–220 μm from the soma, 32°C) that at 20-mV positive to rest, A-type K+channels inactivated with a single exponential time constant of 6 ms, whereas Na+ channels inactivated with a time constant of 37 ms. The ratio of available Na+ to K+ current increased as the duration of the depolarization increased. Thus the subthreshold properties of Na+ and A-type K+ channels provide a mechanism by which information about the level of synaptic activity may be encoded in the amplitude of back-propagating action potentials.


Sign in / Sign up

Export Citation Format

Share Document