scholarly journals Genetic variation in response to an indirect ecological effect

2005 ◽  
Vol 272 (1581) ◽  
pp. 2577-2581 ◽  
Author(s):  
Philip A Astles ◽  
Allen J Moore ◽  
Richard F Preziosi

Indirect ecological effects (IEEs) are widespread and often as strong as the phenotypic effects arising from direct interactions in natural communities. Indirect effects can influence competitive interactions, and are thought to be important selective forces. However, the extent that selection arising from IEEs results in long-term evolutionary change depends on genetic variation underlying the phenotypic response—that is, a genotype-by-IEE interaction. We provide the first data on genetic variation in the response of traits to an IEE, and illustrate how such genetic variation might be detected and analysed. We used a model tri-trophic system to investigate the effect of host plants on two populations of predatory ladybirds through a clonal aphid herbivore. A split-family experimental design allowed us to estimate the effects of aphid host plant on ladybird traits (IEE) and the extent of genetic variation in ladybird predators for response to these effects (genotype-by-indirect environmental effect interaction). We found significant genetic variation in the response of ladybird phenotypes to the indirect effect of host plant of their aphid prey, demonstrating the potential for evolutionary responses to selection arising from the prey host.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3640 ◽  
Author(s):  
Gabriel I. Ballesteros ◽  
Jürgen Gadau ◽  
Fabrice Legeai ◽  
Angelica Gonzalez-Gonzalez ◽  
Blas Lavandero ◽  
...  

The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity) depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea) on the transcriptome of adult A. ervi females. We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222). As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid) but originating from different host plants (pea versus alfalfa) were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts). We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways. These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if different biotypes of a certain aphid host species (A. pisum) are reared on the same host plant. This difference seems to persist even after the different wasp populations were reared on the same aphid host in the laboratory for more than 50 generations. This indicates that either the imprinting process is very persistent or there is enough genetic/allelic variation between A. ervi populations. The role of distinct molecular mechanisms is discussed in terms of the formation of host fidelity.


2019 ◽  
Vol 113 (3) ◽  
pp. 149-159
Author(s):  
Atsalek Rattanawannee ◽  
Kanyanat Wongsa ◽  
Orawan Duangphakdee

Abstract Aphis craccivora Koch (Hemiptera: Aphididae) or cowpea aphid is a polyphagous insect pest that feeds on a variety of leguminous plants. We determined the contribution of host-associated genetic differentiation on population structure using the sequence data generated from analysis of mitochondrial cytochrome b oxidase (Cytb) and nuclear elongation factor-1 alpha (EF1-alpha) of A. craccivora collected from cultivated yardlong bean [Vigna unguiculata (L.) Walp. ssp. sesquipedalis (L.) H. Ohashi.] (Fabales: Fabaceae) and winged bean [Psophocarpus tetragonolobus (L.) D.C.] (Fabales: Fabaceae). Phylogenetic and haplotype network analyses revealed no evidence of strong host plant or geographical clustering in both the mitochondrial and nuclear gene dataset. A moderate, low-magnitude genetic distance (FST) between host plants and geographical localities was found in this study. An analysis of molecular variance (AMOVA) revealed that host plant and geography do not influence the structure of genetic variation in A. craccivora populations. Genetic variation between host plants at a location and host plants among locations demonstrated no consistent result for population subdivision of A. craccivora. These results suggest that geographical location and host plants do not significantly influence the genetic structure of A. craccivora, and this might be due to their high reproductive (parthenogenesis) ability and high migration (airborne) between host plants and regions of the country.


2012 ◽  
Vol 279 (1741) ◽  
pp. 3250-3255 ◽  
Author(s):  
Jeffrey B. Joy ◽  
Bernard J. Crespi

Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.


2021 ◽  
Vol 66 (1) ◽  
Author(s):  
Elena Gultyaeva ◽  
Mark Levitin ◽  
Ekaterina Shaydayuk

The article analyzes our own data and data from the literature on the study of plant–pathogen interactions in the pathosystem of Puccinia triticina and host plants of the genera Triticum and Aegilops with different ploidy and genomes. We characterize the long-term variability of the Russian populations of the pathogen, caused by the cultivation of genetically protected cultivars of common wheat (T. aestivum). Differences of the pathogen’s virulence on hexaploid species T. aestivum and tetraploid wheat (T. durum) are shown. Data on the pathogen’s virulence on other hexaploid, tetraploid, and diploid relative species Triticum sp. and Aegilops sp. are presented. Adaptation and specificity to the host plant were shown as the key driving factors in the evolution and divergence of clonally propagating phytopathogens, which include leaf rust.


1965 ◽  
Vol 97 (10) ◽  
pp. 1016-1024 ◽  
Author(s):  
Manfred Mackauer

AbstractExisting theories and conclusions on the taxonomic relationships between various aphids are based on a study of those insects alone, and are often a matter of opinion.True taxonomic relationships frequently are revealed when the host ranges of the insect parasites of aphids are considered.Conclusions from a study of the host-relationships of aphid parasites of the family Aphidiidae (Hymenoptera: Ichneumonoidea): support the division of the superfamily Aphidoidea into Phylloxerina and Aphidina; support that Chaitophoridae, Callaphididae and Aphididae (including Lachnidae) form a monophyletic group, with the Aphididae the most recent member; support the view that the Rosaceae complex of Aphididae is natural; show that the aphid host plant usually has no decisive influence on the potential host range of an aphidiid species, even in cases of a taxonomically discontinuous change in host plants; and do not support the placement of the genus Drepanosiphum with the family Callaphididae, subfamily Phyllaphidinae.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 501 ◽  
Author(s):  
Yan-Hong Liu ◽  
M. Mostafizur Rahman Shah ◽  
Yue Song ◽  
Tong-Xian Liu

Symbionts contribute nutrients that allow insects to feed on plants. The whitefly Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) is a polyphagous pest that depends on symbionts to provide key nutrients that are deficient in the diet. Here, we established three whitefly populations on eggplants, cucumbers, and tomatoes and observed that they harbored the same symbiont taxa in different quantities. The amount of the primary symbiont, Portiera, decreased with increasing concentrations of host-plant essential amino acids (EAAs). Whitefly populations transferred to different plant species exhibited fluctuations in Portiera amounts in the first three or four generations; the amount of Portiera increased when whitefly populations were transferred to plant species with lower EAAs proportions. As for the secondary symbionts, the whitefly population of eggplants exhibited lower quantities of Hamiltonella and higher quantities of Rickettsia than the other two populations. The changes of both symbionts’ abundance in whitefly populations after host-plant-shifting for one generation showed little correlation with the EAAs’ proportions of host plants. These findings suggest that host-plant nitrogen nutrition, mainly in the form of EAAs, influences the abundance of symbionts, especially Portiera, to meet the nutritional demands of whiteflies. The results will inform efforts to control pests through manipulating symbionts in insect–symbiont associations.


Author(s):  
Hussein M. Khaeim ◽  
Anthony Clark ◽  
Tom Pearson ◽  
Dr. David Van Sanford

Head scab is historically a devastating disease affecting not just all classes of wheat but also barley and other small grains around the world. Fusarium head blight (FHB), or head scab, is caused most often by Fusarium graminearum (Schwabe), (sexual stage – Gibberella zeae) although several Fusarium spp. can cause the disease. This study was conducted to determine the effect of mass selection for FHB resistance using an image-based optical sorter. lines were derived from the C0 and C2 of two populations to compare genetic variation within populations with and without sorter selection. Our overall hypothesis is that sorting grain results in improved Fusarium head blight resistance. Both of the used wheat derived line populations have genetic variation, and population 1 has more than population 17. They are significantly different from each other for fusarium damged kernel (FDK), deoxynivalenol (DON), and other FHB traits. Although both populations are suitable to be grown for bulks, population 1 seems better since it has more genetic variation as well as lower FDK and DON, and earlier heading date. Lines within each population were significantly different and some lines in each population had significantly lower FDK and DON after selection using an optical sorter. Some lines had significant reduction in both FDK and DON, and some others had either FDK or DON reduction. Lines of population 1 that had significant reduction, were more numerous than in population 17, and FDK and DON reduction were greater.


Genetics ◽  
1997 ◽  
Vol 146 (2) ◽  
pp. 471-479 ◽  
Author(s):  
Michael Travisano

The effect of environment on adaptation and divergence was examined in two sets of populations of Escherichia coli selected for 1000 generations in either maltose- or glucose-limited media. Twelve replicate populations selected in maltose-limited medium improved in fitness in the selected environment, by an average of 22.5%. Statistically significant among-population genetic variation for fitness was observed during the course of the propagation, but this variation was small relative to the fitness improvement. Mean fitness in a novel nutrient environment, glucose-limited medium, improved to the same extent as in the selected environment, with no statistically significant among-population genetic variation. In contrast, 12 replicate populations previously selected for 1000 generations in glucose-limited medium showed no improvement, as a group, in fitness in maltose-limited medium and substantial genetic variation. This asymmetric pattern of correlated responses suggests that small changes in the environment can have profound effects on adaptation and divergence.


Author(s):  
Marcin W. Zielonka ◽  
Tom W. Pope ◽  
Simon R. Leather

Abstract The carnation tortrix moth, Cacoecimorpha pronubana (Hübner, [1799]) (Lepidoptera: Tortricidae), is one of the most economically important insect species affecting the horticultural industry in the UK. The larvae consume foliage, flowers or fruits, and/or rolls leaves together with silken threads, negatively affecting the growth and/or aesthetics of the crop. In order to understand the polyphagous behaviour of this species within an ornamental crop habitat, we hypothesized that different host plant species affect its life history traits differently. This study investigated the effects of the host plant species on larval and pupal durations and sizes, and fecundity (the number of eggs and the number and size of egg clutches). At 20°C, 60% RH and a 16L:8D photoperiod larvae developed 10, 14, 20 and 36 days faster when reared on Christmas berry, Photinia (Rosaceae), than on cherry laurel, Prunus laurocerasus (Rosaceae), New Zealand broadleaf, Griselinia littoralis (Griseliniaceae), Mexican orange, Choisya ternata (Rutaceae), and firethorn, Pyracantha angustifolia (Rosaceae), respectively. Female pupae were 23.8 mg heavier than male pupae, and pupal weight was significantly correlated with the duration of larval development. The lowest and the highest mean numbers of eggs were produced by females reared on Pyracantha (41) and Photinia (202), respectively. Clutch size differed significantly among moths reared on different host plants, although the total number of eggs did not differ. This study showed that different ornamental host plants affect the development of C. pronubana differently. Improved understanding of the influence of host plant on the moth's life history parameters measured here will help in determining the economic impact that this species may have within the ornamental plant production environment, and may be used in developing more accurate crop protection methodologies within integrated pest management of this insect.


Sign in / Sign up

Export Citation Format

Share Document