scholarly journals First satellite tracks of neonate sea turtles redefine the ‘lost years’ oceanic niche

2014 ◽  
Vol 281 (1781) ◽  
pp. 20133039 ◽  
Author(s):  
Katherine L. Mansfield ◽  
Jeanette Wyneken ◽  
Warren P. Porter ◽  
Jiangang Luo

Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle ‘lost years’. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads ( Caretta caretta ) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle ‘lost years’ paradigms.

2009 ◽  
Vol 66 (7) ◽  
pp. 1467-1479 ◽  
Author(s):  
Sarah L. Hughes ◽  
N. Penny Holliday ◽  
Eugene Colbourne ◽  
Vladimir Ozhigin ◽  
Hedinn Valdimarsson ◽  
...  

Abstract Hughes, S. L., Holliday, N. P., Colbourne, E., Ozhigin, V., Valdimarsson, H., Østerhus, S., and Wiltshire, K. 2009. Comparison of in situ time-series of temperature with gridded sea surface temperature datasets in the North Atlantic. – ICES Journal of Marine Science, 66: 1467–1479. Analysis of the effects of climate variability and climate change on the marine ecosystem is difficult in regions where long-term observations of ocean temperature are sparse or unavailable. Gridded sea surface temperature (SST) products, based on a combination of satellite and in situ observations, can be used to examine variability and long-term trends because they provide better spatial coverage than the limited sets of long in situ time-series. SST data from three gridded products (Reynolds/NCEP OISST.v2., Reynolds ERSST.v3, and the Hadley Centre HadISST1) are compared with long time-series of in situ measurements from ICES standard sections in the North Atlantic and Nordic Seas. The variability and trends derived from the two data sources are examined, and the usefulness of the products as a proxy for subsurface conditions is discussed.


Author(s):  
Carlos Garcia-Soto ◽  
Robin D. Pingree

The sea surface temperature (SST) variability of the Bay of Biscay and adjacent regions (1854–2010) has been examined in relation to the evolution of the Atlantic Multidecadal Oscillation (AMO), a major climate mode. The AMO index explains ~25% of the interannual variability of the annual SST during the last 150 years, while different indices of the North Atlantic Oscillation (NAO) explain ≤1% of the long-term record. NAO is a high frequency climate mode while AMO can modulate low frequency changes. Sixty per cent of the AMO variability is contained in periods longer than a decade. The basin-scale influence of NAO on SST over specific years (1995 to 1998) is presented and the SST anomalies explained. The period analysed represents an abrupt change in NAO and the North Atlantic circulation state as shown with altimetry and SST data. Additional atmospheric climate data over a shorter ~60 year period (1950–2008) show the influence on the Bay of Biscay SST of the East Atlantic (EA) pattern and the Scandinavia (SCA) pattern. These atmospheric teleconnections explain respectively ~25% and ~20% of the SST variability. The winter SST in the shelf-break/slope or poleward current region is analysed in relation to AMO. The poleward current shows a trend towards increasing SSTs during the last three decades as a result of the combined positive phase of AMO and global warming. The seasonality of this winter warm flow in the Iberian region is related to the autumn/winter seasonality of south-westerly (SW) winds. The SW winds are strengthened along the European shelf-break by the development of low pressure conditions in the region to the north of the Azores and therefore a negative NAO. AMO overall modulates multidecadal changes (~60% of the AMO variance). The long-term time-series of SST and SST anomalies in the Bay of Biscay show AMO-like cycles with maxima near 1870 and 1950 and minima near 1900 and 1980 indicating a period of 60–80 years during the last century and a half. Similar AMO-like variability is found in the Russell cycle of the Western English Channel (1924–1972). AMO relates at least to four mesozooplankton components of the Russell cycle: the abundance of the chaetognaths Parasagitta elegans and Parasagitta setosa (AMO −), the amount of the species Calanus helgolandicus (AMO −), the amount of the larvae of decapod crustaceans (AMO −) and the number of pilchard eggs (Sardine pilchardus; AMO +). In addition to AMO, the decadal to multidecadal (D2M) variability in the number of sunspots is analysed for the last 300 years. Several periodicities and a multi-secular linear increase are presented. There are secular minima near 1710, 1810, 1910 and 2010. The long term variability (>11 years) of the solar sunspot activity explains ~50% of the variance of the SST of the Bay of Biscay with periods longer than 11 years. AMO is finally compared with the Pacific Decadal Oscillation, the leading principal component of North Pacific SST anomalies.


The Holocene ◽  
2020 ◽  
Vol 31 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Lisa C Orme ◽  
Arto Miettinen ◽  
Marit-Solveig Seidenkrantz ◽  
Kirsi Tuominen ◽  
Christof Pearce ◽  
...  

In recent decades the surface water temperature and salinity in the Labrador Sea have been influenced by atmospheric circulation patterns, such as the North Atlantic Oscillation (NAO), as well as a trend to increasingly warm atmospheric temperatures in recent years. These changes are concerning, given the important role that temperature and salinity have on deep convection in the Labrador Sea. Yet, due to the shortness of available records, the long-term patterns of climate variability in the region are not clear. Here, a diatom-based reconstruction of summer sea-surface temperature (SST) developed from Trinity Bay, Newfoundland, provides insight into variations of SST since 7.2 cal ka BP in the southwestern Labrador Sea. The results show that the Holocene Thermal Maximum (HTM) lasted until c. 5.2 cal ka BP, which was followed by a gradual cooling trend overprinted by centennial temperature fluctuations of 1–2°C. Long-term cooling was likely the result of declining Northern Hemisphere orbital summer insolation, potentially amplified by long-term changes in surface and bottom water salinity, which led to a gradual reduction in the stratification of the water column. Centennial fluctuations in temperature vary in-phase with reconstructed variations in the NAO, supporting a consistent relationship between atmospheric circulation and SST over centennial-millennial timescales. Other factors influencing the SST variability may have been solar forcing during the mid-Holocene and variations in the strength of the subpolar gyre during the late-Holocene. The most prolonged cool period at 5.2–4.1 cal ka BP coincides with sharply reduced salinity in the Labrador Sea and a weakening of deep ventilation in the northeast Atlantic, highlighting a period with altered ocean surface conditions and circulation across the northern North Atlantic.


2009 ◽  
Vol 5 (6) ◽  
pp. 2465-2496 ◽  
Author(s):  
S. Feng ◽  
Q. Hu ◽  
R. J. Oglesby

Abstract. Instrumental records of the North Atlantic sea surface temperatures (SST) show a significant 60–80 year cycle, referred to as the Atlantic Multidecadal Oscillation (AMO). During AMO warm (cold) phases, SST over the entire North Atlantic Ocean is dominated by basin-wide positive (negative) anomalies. We analyzed SST variations in the North Atlantic Ocean for the last 10 ka. The long-term and centennial variations of Holocene SST in the North Atlantic demonstrate a basin-wide mode that clearly resembles the AMO signal recorded during the recent instrumental period. The long-term changes of Holocene SST were controlled by the solar insolation related to the orbital variations, and the centennial variations were closely coupled with the intensity of the thermohaline circulation. The spatial extent in the Atlantic realm of temperature anomalies around two specific time intervals, 8.2 ka and during the medieval warm period, also resemble the observed temperature anomalies associated with the AMO. These results demonstrate that the modern AMO, and centennial and longer time scale SST variations during the Holocene share a similar spatial extent in the North Atlantic, and presumably as well physical processes associated with their existence and their far-field teleconnection effects.


2020 ◽  
Author(s):  
Philippe Gaspar ◽  
Maxime Lalire ◽  
Pierrick Giffard ◽  
Tony Candela

<p>It has long been assumed that young sea turtles drift passively with ocean currents. As a consequence, simple Lagrangian models have often been used to investigate the dispersal of various sea turtle populations during their juvenile stage. However, evidence is growing that juvenile sea turtles do not drift purely passively with ocean currents but also display some swimming activity, generally directed towards favorable habitats.</p><p>We have thus developed a new Sea Turtle Active Movement Model (STAMM) in which simulated individuals disperse under the combined influence of oceanic currents and swimming movements triggered by the need to find suitable habitats, that is areas with suitable water temperatures and sufficient food.  Preferred temperatures and food requirements are modeled to vary with the age (or size) of the simulated individuals.</p><p>STAMM is used here to investigate the active dispersal of juvenile leatherback turtles (Dermochelys coriacea) born in French Guiana, a major rookery for the Northwest Atlantic population. Our simulations reveal that:</p><ol><li> While currents broadly shape the dispersal area, habitat-driven movements profoundly structure the spatio-temporal distribution of juveniles within this area. Passive turtles can drift far North in deadly cold waters or concentrate in oligotrophic waters found at the center of the North Atlantic subtropical gyre. On the contrary, actively swimming juveniles tend to concentrate in favorable habitats along the northern boundary of the subtropical gyre and undertake seasonal north-south migrations allowing them to remain in suitable water temperatures.</li> <li>Active juveniles ultimately target rich areas of the Eastern Atlantic basin, in particular in the Bay of Biscay, off Galicia, Portugal and Mauritania, and in the western Mediterranean Sea where juvenile leatherbacks are actually observed. These zones are inaccessible to passive turtles.</li> <li>Arrival times of the active juveniles in these favorable zones are consistent with the observed sizes of individuals bycaught or stranded in these areas;</li> </ol><p>All together these results suggest that active habitat-driven swimming movements shall be systematically taken into account to produce realistic simulations of the spatial distribution of sea turtles during their pelagic juvenile stage. This is much needed to help develop effective conservation measures targeting this critical life stage.</p>


Author(s):  
Robert H. Ellison

Prompted by the convulsions of the late eighteenth century and inspired by the expansion of evangelicalism across the North Atlantic world, Protestant Dissenters from the 1790s eagerly subscribed to a millennial vision of a world transformed through missionary activism and religious revival. Voluntary societies proliferated in the early nineteenth century to spread the gospel and transform society at home and overseas. In doing so, they engaged many thousands of converts who felt the call to share their experience of personal conversion with others. Though social respectability and business methods became a notable feature of Victorian Nonconformity, the religious populism of the earlier period did not disappear and religious revival remained a key component of Dissenting experience. The impact of this revitalization was mixed. On the one hand, growth was not sustained in the long term and, to some extent, involvement in interdenominational activity undermined denominational identity; on the other hand, Nonconformists gained a social and political prominence they had not enjoyed since the middle of the seventeenth century and their efforts laid the basis for the twentieth-century explosion of evangelicalism in Africa, Asia, and South America.


2021 ◽  
Vol 13 (14) ◽  
pp. 2805
Author(s):  
Hongwei Sun ◽  
Junyu He ◽  
Yihui Chen ◽  
Boyu Zhao

Sea surface partial pressure of CO2 (pCO2) is a critical parameter in the quantification of air–sea CO2 flux, which plays an important role in calculating the global carbon budget and ocean acidification. In this study, we used chlorophyll-a concentration (Chla), sea surface temperature (SST), dissolved and particulate detrital matter absorption coefficient (Adg), the diffuse attenuation coefficient of downwelling irradiance at 490 nm (Kd) and mixed layer depth (MLD) as input data for retrieving the sea surface pCO2 in the North Atlantic based on a remote sensing empirical approach with the Categorical Boosting (CatBoost) algorithm. The results showed that the root mean square error (RMSE) is 8.25 μatm, the mean bias error (MAE) is 4.92 μatm and the coefficient of determination (R2) can reach 0.946 in the validation set. Subsequently, the proposed algorithm was applied to the sea surface pCO2 in the North Atlantic Ocean during 2003–2020. It can be found that the North Atlantic sea surface pCO2 has a clear trend with latitude variations and have strong seasonal changes. Furthermore, through variance analysis and EOF (empirical orthogonal function) analysis, the sea surface pCO2 in this area is mainly affected by sea temperature and salinity, while it can also be influenced by biological activities in some sub-regions.


1994 ◽  
Vol 126 (4) ◽  
pp. 275-287 ◽  
Author(s):  
Edouard Bard ◽  
Maurice Arnold ◽  
Jan Mangerud ◽  
Martine Paterne ◽  
Laurent Labeyrie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document