scholarly journals On signals of phase transitions in salmon population dynamics

2014 ◽  
Vol 281 (1784) ◽  
pp. 20133221 ◽  
Author(s):  
Martin Krkošek ◽  
John M. Drake

Critical slowing down (CSD) reflects the decline in resilience of equilibria near a bifurcation and may reveal early warning signals (EWS) of ecological phase transitions. We studied CSD in the recruitment dynamics of 120 stocks of three Pacific salmon ( Oncorhynchus spp.) species in relation to critical transitions in fishery models. Pink salmon ( Oncorhynchus gorbuscha ) exhibited increased variability and autocorrelation in populations that had a growth parameter, r , close to zero, consistent with EWS of extinction. However, models and data for sockeye salmon ( Oncorhynchus nerka ) indicate that portfolio effects from heterogeneity in age-at-maturity may obscure EWS. Chum salmon ( Oncorhynchus keta ) show intermediate results. The data do not reveal EWS of Ricker-type bifurcations that cause oscillations and chaos at high r . These results not only provide empirical support for CSD in some ecological systems, but also indicate that portfolio effects of age structure may conceal EWS of some critical transitions.

2020 ◽  
Vol 77 (6) ◽  
pp. 943-949 ◽  
Author(s):  
Brendan Connors ◽  
Michael J. Malick ◽  
Gregory T. Ruggerone ◽  
Pete Rand ◽  
Milo Adkison ◽  
...  

Pacific salmon productivity is influenced by ocean conditions and interspecific interactions, yet their combined effects are poorly understood. Using data from 47 North American sockeye salmon (Oncorhynchus nerka) populations, we present evidence that the magnitude and direction of climate and competition effects vary over large spatial scales. In the south, a warm ocean and abundant salmon competitors combined to strongly reduce sockeye productivity, whereas in the north, a warm ocean substantially increased productivity and offset the negative effects of competition at sea. From 2005 to 2015, the approximately 82 million adult pink salmon (Oncorhynchus gorbuscha) produced annually from hatcheries were estimated to have reduced the productivity of southern sockeye salmon by ∼15%, on average. In contrast, for sockeye at the northwestern end of their range, the same level of hatchery production was predicted to have reduced the positive effects of a warming ocean by ∼50% (from a ∼10% to a ∼5% increase in productivity, on average). These findings reveal spatially dependent effects of climate and competition on sockeye productivity and highlight the need for international discussions about large-scale hatchery production.


2006 ◽  
Vol 120 (2) ◽  
pp. 199
Author(s):  
Alexandra Morton ◽  
Rob Williams

Recent recurring infestations of Sea Lice, Lepeophtheirus salmonis, on juvenile Pacific salmon (Oncorhynchus spp.) and subsequent annual declines of these stocks have made it imperative to identify the source of Sea Lice. While several studies now identify farm salmon populations as sources of Sea Louse larvae, it is unclear to what extent wild salmonid hosts also contribute Sea Lice. We measured Sea Louse numbers on adult Pink Salmon (Oncorhynchus gorbuscha) migrating inshore. We also measured Sea Louse numbers on wild juvenile Pink and Chum salmon (Oncorhynchus keta) migrating to sea before the adults returned, and as the two age cohorts mingled. Adult Pink Salmon carried an average of 9.89 (SE 0.90) gravid lice per fish, and thus were capable of infecting the adjacent juveniles. Salinity and temperature remained favourable to Sea Louse reproduction throughout the study. However, all accepted measures of Sea Louse infestation failed to show significant increase on the juvenile salmon, either in overall abundance of Sea Lice or of the initial infective-stage juvenile lice, while the adult wild salmon were present in the study area. This study suggests that even during periods of peak interaction, wild adult salmon are not the primary source of the recent and unprecedented infestations of Sea Lice on juvenile Pacific Pink and Chum salmon in the inshore waters of British Columbia.


1988 ◽  
Vol 66 (1) ◽  
pp. 266-273 ◽  
Author(s):  
C. B. Murray ◽  
J. D. McPhail

Embryo and alevin survival, time to hatching and emergence, and alevin and fry size of five species of Pacific salmon (Oncorhynchus) were observed at five incubation temperatures (2, 5, 8, 11, and 14 °C). No pink (Oncorhynchus gorbuscha) or chum (O. keta) salmon embryos survived to hatching at 2 °C. Coho (O. kisutch) and sockeye (O. nerka) salmon had higher embryo survival at 2 °C than chinook (O. tschawytscha) salmon. At 14 °C, chum, pink, and chinook salmon had higher embryo survival than coho or sockeye salmon. In all species, peaks of embryo mortality occurred at specific developmental stages (completion of epiboly, eye pigmentation, and hatching). Alevin survival to emergence was high for all species, except for coho and pink salmon at 14 °C. Hatching and emergence time varied inversely with incubation temperature, but coho salmon hatched and emerged sooner at all temperatures than the other species. Coho and sockeye salmon alevins were larger at 2 °C, pink, chum, and chinook salmon alevins were larger at 5 and 8 °C. Coho salmon fry were larger at 2 °C, chinook and chum salmon fry were larger at 5 °C, and sockeye and pink salmon fry were larger at 8 °C. High incubation temperatures reduced fry size in all species. Each species of Pacific salmon appears to be adapted to different spawning times and temperatures, and thus indirectly to specific incubation temperatures, to ensure maximum survival and size and to maintain emergence at the most favorable time each year.


2017 ◽  
Vol 74 (2) ◽  
pp. 191-201 ◽  
Author(s):  
Kyla M. Jeffrey ◽  
Isabelle M. Côté ◽  
James R. Irvine ◽  
John D. Reynolds

Body size can sometimes change rapidly as an evolutionary response to selection or as a phenotypic response to changes in environmental conditions. Here, we revisit a classic case of rapid change in body size of five species of Pacific salmon (Oncorhynchus spp.) caught in Canadian waters, with a six-decade analysis (1951–2012). Declines in size at maturity of up to 3 kg in Chinook (Oncorhynchus tshawytscha) and 1 kg in coho salmon (Oncorhynchus kisutch) during the 1950s and 1960s were later reversed to match or exceed earlier sizes. In contrast, there has been little change in sockeye salmon (Oncorhynchus nerka) sizes and initial declines in pink (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) sizes have halted. Biomass of competing salmon species contributed to changes in size of all five species, and ocean conditions, as reflected by the North Pacific Gyre Oscillation and the Multivariate ENSO (El Niño – Southern Oscillation) indices, explained variation in four of the species. While we have identified a role of climate and density dependence in driving salmon body size, any additional influence of fisheries remains unclear.


2013 ◽  
Vol 70 (1) ◽  
pp. 90-100 ◽  
Author(s):  
M.R. Donaldson ◽  
G.D. Raby ◽  
V.N. Nguyen ◽  
S.G. Hinch ◽  
D.A. Patterson ◽  
...  

We evaluate the utility of an inexpensive, portable recovery bag designed to facilitate recovery of fish from capture stress by combining physiological assays, biotelemetry, and social science surveys. Adult migrating Pacific salmon (Oncorhynchus spp.) were used as a model, since some of their populations are threatened. While catch-and-release is common, there is a need to ensure that it is sustainable. A social science survey revealed that anglers generally have positive attitudes towards recovery bag use, particularly if research identifies that such techniques could be effective. Physiological assays on pink salmon (Oncorhynchus gorbuscha) revealed benefits of both high- and low-velocity recovery, but high velocity was most effective with reduced plasma cortisol concentrations and similar plasma sodium and chloride concentrations as those found in controls at all recovery durations. A biotelemetry study on sockeye salmon (Oncorhynchus nerka) captured by anglers and stressed by air exposure then placed in recovery bags had 20% higher, but not significantly different, survival than no-recovery salmon. The integration of natural science and social science provides an important step forward in developing methods for promoting recovery of fish from capture.


2009 ◽  
Vol 87 (3) ◽  
pp. 195-203 ◽  
Author(s):  
Thomas P. Quinn ◽  
Stephanie M. Carlson ◽  
Scott M. Gende ◽  
Harry B. Rich, Jr.

Predation on Pacific salmon by bears (genus Ursus L., 1758) can be an important ecosystem process because the spatial distribution of carcasses largely determines whether marine-derived nutrients cycle through aquatic or terrestrial pathways. Direct observations on three streams in southeastern Alaska indicated that 49% of the pink ( Oncorhynchus gorbuscha (Walbaum, 1792)) and chum ( Oncorhynchus keta (Walbaum in Artedi, 1792)) salmon killed by bears were carried into the forest. The tendency of bears to transport carcasses was independent of the sex and species of salmon, but unspawned fish were more often transported than fish that had completed spawning. Data on tagged sockeye salmon ( Oncorhynchus nerka (Walbaum in Artedi, 1792)) in one southwestern Alaska stream indicated that 42.6% of the killed salmon were transported, and that higher percentages were transported in years when salmon densities were greater. At six other streams, on average, 68.1% of the sockeye salmon killed were apparently transported away from the stream into the forest. Combining the data from all sites, the proportion of carcasses transported increased with water depth at the site. These results emphasize the role that bears play in mediating the interactions between nutrients from salmon and the terrestrial and aquatic ecosystems, and the variation in carcass distribution among streams and among years.


2010 ◽  
Vol 84 (4) ◽  
pp. 434-440 ◽  
Author(s):  
J. Suzuki ◽  
R. Murata ◽  
K. Sadamasu ◽  
J. Araki

AbstractWe investigated the risk of diphyllobothriasis from ingestion of wild Pacific salmon in Japan by surveying Diphyllobothrium plerocercoids in 182 salmon samples obtained from Japan. The plerocercoids were not detected in chum salmon (Oncorhynchus keta) (0/26), called Akizake in Japan, caught between September and November. However, the detection rate of plerocercoids in chum salmon, called Tokishirazu in Japan, caught between early April and June, was 51.1% (24/47) with an average of two plerocercoid larvae per fish. The detection rates of cherry salmon (Oncorhynchus masou) and pink salmon (Oncorhynchus gorbuscha) were 12.2% (10/82) and 18.5% (5/27), respectively, and the average number of plerocercoids per fish was 0.45 (37 larvae/82 fishes) and 0.22 larvae (6 larvae/27 fishes), respectively. Plerocercoids isolated from O. keta and O. masou were identified as Diphyllobothrium nihonkaiense on the basis of molecular analysis of the cox1 and nad3 genes. Moreover, four tapeworms (three from O. keta and one from O. masou) were obtained by infecting golden hamsters with plerocercoids. The morphological features of these tapeworms were similar to those of D. nihonkaiense isolated from humans. Therefore, we think that O. keta and not O. masou is the most important source of plerocercoid infections in Japan.


2006 ◽  
Vol 63 (9) ◽  
pp. 2076-2086 ◽  
Author(s):  
Morgan D Hocking ◽  
Thomas E Reimchen

Anadromous Pacific salmon (Oncorhynchus spp.) subsidize terrestrial food webs with their nutrients and carcasses, a process driven largely by selective foraging by bears (Ursus spp.). We quantify wildlife transfer of salmon carcasses to riparian zones on two watersheds in coastal British Columbia and estimate total terrestrial fly production from remnant carcasses. Large-bodied chum salmon (Oncorhynchus keta) were transferred into the forest at a greater rate than were pink salmon (Oncorhynchus gorbuscha) (chum salmon mass = 6089–11 031 kg, 16%–48% of salmon run; pink salmon mass = 2266–2808 kg, 4%–6% of salmon run). Blow flies (genus Calliphora) and other Diptera dominated colonization (>90% of salmon carcasses). Between the two watersheds, 196 and 265 g of Calliphora larvae per metre of spawning length (4 and 7 million larvae for whole watersheds) were generated from salmon carcass transfer. Stable isotope analysis of δ15N and δ13C of spring-emerging adult Calliphora revealed that >80% of individuals had salmon-based signatures. Flies are a dominant consumer and vector of salmon nutrients in terrestrial habitats and supplement the diet of at least 16 vertebrate and 22 invertebrate species. Anticipated further declines of salmon in the North Pacific can be expected to further erode the complex associations coupling marine and terrestrial ecosystems.


2010 ◽  
Vol 68 (1) ◽  
pp. 144-156 ◽  
Author(s):  
Alexandra Morton ◽  
Rick Routledge ◽  
Amy McConnell ◽  
Martin Krkošek

Abstract Morton, A., Routledge, R., McConnell, A., and Krkošek, M. 2011. Sea lice dispersion and salmon survival in relation to salmon farm activity in the Broughton Archipelago. – ICES Journal of Marine Science, 68: 144–156. The risk of salmon lice (Lepeophtheirus salmonis) transmission to wild juvenile Pacific salmon has spurred management change to reduce lice on salmon farms. We studied the abundance of planktonic lice preceding the juvenile salmon outmigration as well as the abundance of lice on juvenile pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon in two distinct migration routes, one containing only fallow farms and the other active farms that applied a parasiticide. Results indicate that fallowing reduces the abundance and flattens the spatial distribution of lice relative to that expected in areas without farms. Active farms remained the primary source of lice, but transmission was reduced 100-fold relative to previous epizootics in the study area. On the migration route containing active farms, ∼50% of the juvenile salmon showed evidence of louse damage to surface tissues and the estimated direct louse-induced mortality was <10%, not including indirect effects of infection on predation risk or competition. The survival of the pink salmon cohort was not statistically different from a reference region without salmon farms. Although repeated use of a single parasiticide can lead to resistance, reducing louse transmission from farmed salmon may help conserve some wild Pacific salmon populations.


2014 ◽  
Vol 71 (4) ◽  
pp. 521-532 ◽  
Author(s):  
Noel R. Swain ◽  
Morgan D. Hocking ◽  
Jennifer N. Harding ◽  
John D. Reynolds

Pacific salmon (Oncorhynchus spp.) can subsidize freshwater food webs with marine-derived nutrients from their eggs, juveniles, and carcasses. However, trophic interactions between spawning salmon and freshwater fish across natural gradients in salmon subsidies remain unclear. We tested how salmon affected the diets and condition of two dominant freshwater consumers — prickly and coastrange sculpins (Cottus asper and Cottus aleuticus, respectively) — across a wide gradient of pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) biomass from 33 streams in the Great Bear Rainforest of British Columbia, Canada. Sculpin diets shifted from invertebrates and juvenile salmonids to salmon eggs when salmon arrived in autumn, with salmon-derived nutrient contributions to diets and sculpin condition increasing with increasing biomass of spawning salmon among streams. Season, habitat, and individual sculpin body size and species also mediated the effects of salmon on sculpin diet as inferred from their carbon and nitrogen stable isotope signatures. This study shows the timing and pathways by which spawning salmon influence the diets and condition of freshwater consumers, and some of the individual and environmental factors that can regulate uptake of salmon nutrients in streams, thus informing ecosystem-based management.


Sign in / Sign up

Export Citation Format

Share Document