scholarly journals Extinction and recolonization of coastal megafauna following human arrival in New Zealand

2014 ◽  
Vol 281 (1786) ◽  
pp. 20140097 ◽  
Author(s):  
Catherine J. Collins ◽  
Nicolas J. Rawlence ◽  
Stefan Prost ◽  
Christian N. K. Anderson ◽  
Michael Knapp ◽  
...  

Extinctions can dramatically reshape biological communities. As a case in point, ancient mass extinction events apparently facilitated dramatic new evolutionary radiations of surviving lineages. However, scientists have yet to fully understand the consequences of more recent biological upheaval, such as the megafaunal extinctions that occurred globally over the past 50 kyr. New Zealand was the world's last large landmass to be colonized by humans, and its exceptional archaeological record documents a vast number of vertebrate extinctions in the immediate aftermath of Polynesian arrival approximately AD 1280. This recently colonized archipelago thus presents an outstanding opportunity to test for rapid biological responses to extinction. Here, we use ancient DNA (aDNA) analysis to show that extinction of an endemic sea lion lineage ( Phocarctos spp.) apparently facilitated a subsequent northward range expansion of a previously subantarctic-limited lineage. This finding parallels a similar extinction–replacement event in penguins ( Megadyptes spp.). In both cases, an endemic mainland clade was completely eliminated soon after human arrival, and then replaced by a genetically divergent clade from the remote subantarctic region, all within the space of a few centuries. These data suggest that ecological and demographic processes can play a role in constraining lineage distributions, even for highly dispersive species, and highlight the potential for dynamic biological responses to extinction.

2018 ◽  
Vol 285 (1893) ◽  
pp. 20182010 ◽  
Author(s):  
Emanuell Ribeiro ◽  
Aaron M. Davis ◽  
Rafael A. Rivero-Vega ◽  
Guillermo Ortí ◽  
Ricardo Betancur-R

Ecological opportunity arising in the aftermath of mass extinction events is thought to be a powerful driver of evolutionary radiations. Here, we assessed how the wake of the Cretaceous–Palaeogene (K-Pg) mass extinction shaped diversification dynamics in a clade of mostly marine fishes (Carangaria), which comprises a disparate array of benthic and pelagic dwellers including some of the most astonishing fish forms (e.g. flatfishes, billfishes, remoras, archerfishes). Analyses of lineage diversification show time-heterogeneous rates of lineage diversification in carangarians, with highest rates reached during the Palaeocene. Likewise, a remarkable proportion of Carangaria's morphological variation originated early in the history of the group and in tandem with a marked incidence of habitat shifts. Taken together, these results suggest that all major lineages and body plans in Carangaria originated in an early burst shortly after the K-Pg mass extinction, which ultimately allowed the occupation of newly released niches along the benthic-pelagic habitat axis.


Author(s):  
M. E. J. Newman ◽  
R. G. Palmer

Developed after a meeting at the Santa Fe Institute on extinction modeling, this book comments critically on the various modeling approaches. In the last decade or so, scientists have started to examine a new approach to the patterns of evolution and extinction in the fossil record. This approach may be called "statistical paleontology," since it looks at large-scale patterns in the record and attempts to understand and model their average statistical features, rather than their detailed structure. Examples of the patterns these studies examine are the distribution of the sizes of mass extinction events over time, the distribution of species lifetimes, or the apparent increase in the number of species alive over the last half a billion years. In attempting to model these patterns, researchers have drawn on ideas not only from paleontology, but from evolutionary biology, ecology, physics, and applied mathematics, including fitness landscapes, competitive exclusion, interaction matrices, and self-organized criticality. A self-contained review of work in this field.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicholas L. Payne ◽  
Simon A. Morley ◽  
Lewis G. Halsey ◽  
James A. Smith ◽  
Rick Stuart-Smith ◽  
...  

AbstractExtrapolating patterns from individuals to populations informs climate vulnerability models, yet biological responses to warming are uncertain at both levels. Here we contrast data on the heating tolerances of fishes from laboratory experiments with abundance patterns of wild populations. We find that heating tolerances in terms of individual physiologies in the lab and abundance in the wild decline with increasing temperature at the same rate. However, at a given acclimation temperature or optimum temperature, tropical individuals and populations have broader heating tolerances than temperate ones. These congruent relationships implicate a tight coupling between physiological and demographic processes underpinning macroecological patterns, and identify vulnerability in both temperate and tropical species.


2021 ◽  
Vol 288 (1960) ◽  
Author(s):  
Pedro M. Monarrez ◽  
Noel A. Heim ◽  
Jonathan L. Payne

Whether mass extinctions and their associated recoveries represent an intensification of background extinction and origination dynamics versus a separate macroevolutionary regime remains a central debate in evolutionary biology. The previous focus has been on extinction, but origination dynamics may be equally or more important for long-term evolutionary outcomes. The evolution of animal body size is an ideal process to test for differences in macroevolutionary regimes, as body size is easily determined, comparable across distantly related taxa and scales with organismal traits. Here, we test for shifts in selectivity between background intervals and the ‘Big Five’ mass extinction events using capture–mark–recapture models. Our body-size data cover 10 203 fossil marine animal genera spanning 10 Linnaean classes with occurrences ranging from Early Ordovician to Late Pleistocene (485–1 Ma). Most classes exhibit differences in both origination and extinction selectivity between background intervals and mass extinctions, with the direction of selectivity varying among classes and overall exhibiting stronger selectivity during origination after mass extinction than extinction during the mass extinction. Thus, not only do mass extinction events shift the marine biosphere into a new macroevolutionary regime, the dynamics of recovery from mass extinction also appear to play an underappreciated role in shaping the biosphere in their aftermath.


2004 ◽  
Vol 78 (6) ◽  
pp. 1138-1145 ◽  
Author(s):  
Jean-Bernard Caron ◽  
David M. Rudkin ◽  
Stuart Milliken

The discovery of a new naraoiid nektaspid in the Upper Silurian (Pridolian) of southeastern Ontario significantly extends the range of this unusual group. Nektaspids are nonmineralized arthropods typical of Early and Middle Cambrian soft-bottom communities, but were thought to have become extinct in the Late Ordovician. The unique holotype specimen of Naraoia bertiensis n. sp. comes from a Konservat–Lagerstätte deposit renowned for its eurypterid fauna (the Williamsville Member of the Bertie Formation). Naraoia bertiensis lacks thoracic segments and is morphologically similar to Naraoia compacta from the Middle Cambrian Burgess Shale, save for the presence of a long ventral cephalic doublure and a subtly pointed posterior shield. To examine the phylogenetic relationships of the new naraoiid, we coded characters of the holotype specimen and of nine previously described nektaspids. The results confirm a sister taxon relationship between Naraoia compacta and Naraoia bertiensis and the monophyly of nektaspid forms lacking thoracic segments (family Naraoiidae). This latter group may have arisen from an ancestral segment-bearing form through heterochronic loss of thoracic segments early in the Cambrian. The disjunct occurrence of a naraoiid nektaspid in the Late Silurian resembles the reappearance of other “Lazarus taxa” that were thought to have been eliminated during mass extinction events. The naraoiid lineage survived the Late Ordovician biotic crisis, but in this case the “Lazarus effect” seems likely to be taphonomic in origin.


2010 ◽  
Vol 365 (1558) ◽  
pp. 3667-3679 ◽  
Author(s):  
Michael J. Benton

Comparative studies of large phylogenies of living and extinct groups have shown that most biodiversity arises from a small number of highly species-rich clades. To understand biodiversity, it is important to examine the history of these clades on geological time scales. This is part of a distinct ‘phylogenetic expansion’ view of macroevolution, and contrasts with the alternative, non-phylogenetic ‘equilibrium’ approach to the history of biodiversity. The latter viewpoint focuses on density-dependent models in which all life is described by a single global-scale model, and a case is made here that this approach may be less successful at representing the shape of the evolution of life than the phylogenetic expansion approach. The terrestrial fossil record is patchy, but is adequate for coarse-scale studies of groups such as vertebrates that possess fossilizable hard parts. New methods in phylogenetic analysis, morphometrics and the study of exceptional biotas allow new approaches. Models for diversity regulation through time range from the entirely biotic to the entirely physical, with many intermediates. Tetrapod diversity has risen as a result of the expansion of ecospace, rather than niche subdivision or regional-scale endemicity resulting from continental break-up. Tetrapod communities on land have been remarkably stable and have changed only when there was a revolution in floras (such as the demise of the Carboniferous coal forests, or the Cretaceous radiation of angiosperms) or following particularly severe mass extinction events, such as that at the end of the Permian.


2000 ◽  
Vol 203 (23) ◽  
pp. 3655-3665 ◽  
Author(s):  
D.P. Costa ◽  
N.J. Gales

The New Zealand sea lion, Phocarctos hookeri, is the deepest- and longest-diving sea lion. We were interested in whether the diving ability of this animal was related to changes in its at-sea and diving metabolic rates. We measured the metabolic rate, water turnover and diving behavior of 12 lactating New Zealand sea lions at Sandy Bay, Enderby Island, Auckland Islands Group, New Zealand (50 degrees 30′S, 166 degrees 17′E), during January and February 1997 when their pups were between 1 and 2 months old. Metabolic rate (rate of CO(2) production) and water turnover were measured using the (18)O doubly-labeled water technique, and diving behavior was measured with time/depth recorders (TDRs). Mean total body water was 66.0+/−1.1 % (mean +/− s.d.) and mean rate of CO(2) production was 0. 835+/−0.114 ml g(−)(1)h(−)(1), which provides an estimated mass-specific field metabolic rate (FMR) of 5.47+/−0.75 W kg(−)(1). After correction for time on shore, the at-sea FMR was estimated to be 6.65+/−1.09 W kg(−)(1), a value 5.8 times the predicted standard metabolic rate of a terrestrial animal of equal size. The mean maximum dive depth was 353+/−164 m, with a mean diving depth of 124+/−36 m. The mean maximum dive duration was 8.3+/−1.7 min, with an average duration of 3.4+/−0.6 min. The deepest, 550 m, and longest, 11.5 min, dives were made by the largest animal (155 kg). Our results indicate that the deep and long-duration diving ability of New Zealand sea lions is not due to a decreased diving metabolic rate. Individual sea lions that performed deeper dives had lower FMRs, which may result from the use of energetically efficient burst-and-glide locomotion. There are differences in the foraging patterns of deep and shallow divers that may reflect differences in surface swimming, time spent on the surface and/or diet. Our data indicate that, although New Zealand sea lions have increased their O(2) storage capacity, they do not, or cannot, significantly reduce their at-sea metabolic rates and are therefore likely to be operating near their physiological maximum.


2019 ◽  
Vol 301 ◽  
pp. 00023
Author(s):  
Pam Mantri ◽  
John Thomas

Life has existed on earth for at least 3.95 billion years. All along, the flame of life has been successfully passed on from generation to generation, and species to species across an immense temporal span. This includes at least five mass-extinction events that wiped out over 70% of all species in each such biotic crisis. Against such immense odds, life has learned to thrive despite repeat assaults. And the ingenuity embedded within natures designs has been an integral part of this inspiring story. For example, the ancient bacterial flagellum is powered by the Mot Complex which is part of a perfectly circular nanoscale rotary engine. It is obvious that nature came upon the wheel much before human arrival (i.e., at least as far back as 2.7 billion years). Many are the design lessons that may be gleaned from studying nature. This paper looks at the immense evolutionary design-laboratory that nature evolves its designs within, and frames it along side an Axiomatic/Complex-Adaptive/Stigmergic Systems perspective.


2009 ◽  
Vol 276 (1672) ◽  
pp. 3523-3529 ◽  
Author(s):  
Karina Acevedo-Whitehouse ◽  
Laura Petetti ◽  
Padraig Duignan ◽  
Aurelie Castinel

Sign in / Sign up

Export Citation Format

Share Document