scholarly journals Fish heating tolerance scales similarly across individual physiology and populations

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicholas L. Payne ◽  
Simon A. Morley ◽  
Lewis G. Halsey ◽  
James A. Smith ◽  
Rick Stuart-Smith ◽  
...  

AbstractExtrapolating patterns from individuals to populations informs climate vulnerability models, yet biological responses to warming are uncertain at both levels. Here we contrast data on the heating tolerances of fishes from laboratory experiments with abundance patterns of wild populations. We find that heating tolerances in terms of individual physiologies in the lab and abundance in the wild decline with increasing temperature at the same rate. However, at a given acclimation temperature or optimum temperature, tropical individuals and populations have broader heating tolerances than temperate ones. These congruent relationships implicate a tight coupling between physiological and demographic processes underpinning macroecological patterns, and identify vulnerability in both temperate and tropical species.

Clay Minerals ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 223-235 ◽  
Author(s):  
Raúl Fernández ◽  
Ana Isabel Ruiz ◽  
Jaime Cuevas

AbstractConcrete and bentonite are being considered as engineered barriers for the deep geological disposal of high-level radioactive waste in argillaceous rocks. Three hydrothermal laboratory experiments of different scalable complexity were performed to improve our knowledge of the formation of calcium aluminate silicate hydrates (C-A-S-H) at the interface between the two materials: concretebentonite transport columns, lime mortar-bentonite transport columns and a portlandite- (bentonite and montmorillonite) batch experiment. Precipitation of C-A-S-H was observed in all experiments. Acicular and fibrous morphologies with certain laminar characteristics were observed which had smaller Ca/Si and larger Al/Si ratios with increasing temperature and lack of accessory minerals. The compositional fields of these C-A-S-H phases formed in the experiments are consistent with Al/(Si+Al) ratios of 0.2– 0.3 described in the literature. The most representative calcium silicate hydrate (C-S-H) phase from the montmorillonite–cement interface is Al-tobermorite. Structural analyses revealed a potential intercalation or association of montmorillonite and C-A-S-H phases at the pore scale.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Satu Ojala ◽  
Ulla Lassi ◽  
Paavo Perämäki ◽  
Riitta L. Keiski

Catalytic oxidation is a feasible and affordable technology for solvent emission abatement. However, finding optimal operation conditions is important, since they are strongly dependent on the application area of VOC incineration. This paper presents the results of the laboratory experiments concerning four most central parameters, that is, effects of concentration, gas hourly space velocity (GHSV), temperature, and moisture on the oxidation of n-butyl acetate. Both fresh and industrially aged commercial Pt/Al2O3catalysts were tested to determine optimal process conditions and the significance order and level of selected parameters. The effects of these parameters were evaluated by computer-aided statistical experimental design. According to the results, GHSV was the most dominant parameter in the oxidation of n-butyl acetate. Decreasing GHSV and increasing temperature increased the conversion of n-butyl acetate. The interaction effect of GHSV and temperature was more significant than the effect of concentration. Both of these affected the reaction by increasing the conversion of n-butyl acetate. Moisture had only a minor decreasing effect on the conversion, but it also decreased slightly the formation of by products. Ageing did not change the significance order of the above-mentioned parameters, however, the effects of individual parameters increased slightly as a function of ageing.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Rachael Morgan ◽  
Josefin Sundin ◽  
Mette H Finnøen ◽  
Gunnar Dresler ◽  
Marc Martínez Vendrell ◽  
...  

Abstract Model organisms can be useful for studying climate change impacts, but it is unclear whether domestication to laboratory conditions has altered their thermal tolerance and therefore how representative of wild populations they are. Zebrafish in the wild live in fluctuating thermal environments that potentially reach harmful temperatures. In the laboratory, zebrafish have gone through four decades of domestication and adaptation to stable optimal temperatures with few thermal extremes. If maintaining thermal tolerance is costly or if genetic traits promoting laboratory fitness at optimal temperature differ from genetic traits for high thermal tolerance, the thermal tolerance of laboratory zebrafish could be hypothesized to be lower than that of wild zebrafish. Furthermore, very little is known about the thermal environment of wild zebrafish and how close to their thermal limits they live. Here, we compared the acute upper thermal tolerance (critical thermal maxima; CTmax) of wild zebrafish measured on-site in West Bengal, India, to zebrafish at three laboratory acclimation/domestication levels: wild-caught, F1 generation wild-caught and domesticated laboratory AB-WT line. We found that in the wild, CTmax increased with increasing site temperature. Yet at the warmest site, zebrafish lived very close to their thermal limit, suggesting that they may currently encounter lethal temperatures. In the laboratory, acclimation temperature appeared to have a stronger effect on CTmax than it did in the wild. The fish in the wild also had a 0.85–1.01°C lower CTmax compared to all laboratory populations. This difference between laboratory-held and wild populations shows that environmental conditions can affect zebrafish’s thermal tolerance. However, there was no difference in CTmax between the laboratory-held populations regardless of the domestication duration. This suggests that thermal tolerance is maintained during domestication and highlights that experiments using domesticated laboratory-reared model species can be appropriate for addressing certain questions on thermal tolerance and global warming impacts.


2020 ◽  
Vol 169 ◽  
pp. 02012
Author(s):  
Alibek Ydyrys ◽  
Birlikbay Yeszhanov ◽  
Nurlan Baymurzaev ◽  
Sayat Sharakhmetov ◽  
Askar Mautenbaev ◽  
...  

The problem of greening the arid zones in Kazakhstan and in the world, as well as addressing water shortages in agriculture in these areas, requires new ideas or innovative technologies. We used sheep’s wool to create biohumus in combination with desert soils. In Kazakhstan sheep’s wool is considered useless, although it is rich in bioresources. Our research shows that biohumus obtained from sheep’s wool is highly fertile in laboratory experiments, and for it the need to use water is 3 times less than for other soils. Under laboratory conditions, we have proven that biohumus can be used to grow plants in different ecological zones. Its use in the wild/field can solve several problems of greening dry areas and growing food crops in low humidity conditions. In addition, it can increase the value of sheep’s wool as a bio resource. It is thus an economically promising technology that meets the environmental standards of a green economy.


2014 ◽  
Vol 281 (1786) ◽  
pp. 20140097 ◽  
Author(s):  
Catherine J. Collins ◽  
Nicolas J. Rawlence ◽  
Stefan Prost ◽  
Christian N. K. Anderson ◽  
Michael Knapp ◽  
...  

Extinctions can dramatically reshape biological communities. As a case in point, ancient mass extinction events apparently facilitated dramatic new evolutionary radiations of surviving lineages. However, scientists have yet to fully understand the consequences of more recent biological upheaval, such as the megafaunal extinctions that occurred globally over the past 50 kyr. New Zealand was the world's last large landmass to be colonized by humans, and its exceptional archaeological record documents a vast number of vertebrate extinctions in the immediate aftermath of Polynesian arrival approximately AD 1280. This recently colonized archipelago thus presents an outstanding opportunity to test for rapid biological responses to extinction. Here, we use ancient DNA (aDNA) analysis to show that extinction of an endemic sea lion lineage ( Phocarctos spp.) apparently facilitated a subsequent northward range expansion of a previously subantarctic-limited lineage. This finding parallels a similar extinction–replacement event in penguins ( Megadyptes spp.). In both cases, an endemic mainland clade was completely eliminated soon after human arrival, and then replaced by a genetically divergent clade from the remote subantarctic region, all within the space of a few centuries. These data suggest that ecological and demographic processes can play a role in constraining lineage distributions, even for highly dispersive species, and highlight the potential for dynamic biological responses to extinction.


Behaviour ◽  
1996 ◽  
Vol 133 (5-6) ◽  
pp. 367-386 ◽  
Author(s):  
Annica Gullberg ◽  
Mats Olsson ◽  
Hakan Tegelström

AbstractWe investigated factors that may determine mate guarding tactics in male sand lizards. In a sample of lizards from a museum collection, larger males had larger testis, but in laboratory experiments and in a natural population larger males did not sire more offspring. Males with long inter-copulatory intervals were more successful in sperm competition than males with short inter-copulatory intervals. In the wild, the operational sex ratio (OSR, No of receptive females/No of sexually active males) declined throughout the mating season. Mean duration of mate guardings was unaffected by OSR, time to ovulation, female age and mass, and clutch size. Larger males guarded females longer and were more likely to mate guard a female of similar age. Larger males had more partners but there was no correlation between male size or guarding time and the proportion of young that males sired in clutches from females mated with several partners. Males with more partners were more successful at siring offspring in clutches from females that mated with more than one partner. We suggest that fitter males are better at both mate acquisition and have more competitive sperm.


Zoosymposia ◽  
2021 ◽  
Vol 20 ◽  
Author(s):  
TOBIAS PFINGSTL ◽  
HEINRICH SCHATZ

This contribution provides an update on the duration of life cycles and lifespans of oribatid mites based on a literature review. The total lifespan is the sum of the immature developmental time (egg to adult) and the longevity of the adult. Most investigations were carried out in the laboratory, few were performed in the field, under field conditions and/or compared with field data. Many life cycles were investigated under different environmental influences. The life cycles of 144 oribatid species are listed. Compared with the total number of known oribatid species, this number is very low. Data for the total lifespan are given for 52 species, either from observations in the laboratory or estimated in comparison with field studies, but can only be guesses of the real lifespan. The typical lifespan of an oribatid species in temperate or boreal regions lasts between 1 and 2 years, rarely 3 years. The few investigated tropical species from laboratory experiments show generally faster development and shorter lifespans as species from temperate regions; no field studies have been carried out in the tropics yet. Long lifespan periods of 5 to 8 years are particularly characteristic of species in polar regions and in mountainous temperate regions. Some examples of species with different longevity in distinct climate regions, very long lifespans and change of life parameters under stressful laboratory conditions are presented.


2021 ◽  
Author(s):  
Luisa Listmann ◽  
Sarah Heath ◽  
Pedro F. Vale ◽  
C. Elisa Schaum ◽  
Sinead Collins

AbstractOstreococcus tauri is a ubiquitous marine pico-eukaryote that is susceptible to lysis upon infection by its species specific Ostreococcus tauri viruses (OtVs). In natural populations of O. tauri, costs of resistance are usually invoked to explain the persistence or reappearance of susceptible individuals in resistant populations. Given the low costs of resistance measured in laboratory experiments with the O. tauri/OtV system to date, the question remains of why susceptible individuals persist in the wild at all. Epidemiological models of host and pathogen population dynamics are one useful approach to understand the conditions that can allow the coexistence of susceptible and resistant hosts. We used a SIR (Susceptible-Infected-Resistant) model to investigate epidemiological dynamics under different laboratory culturing regimes that are commonly used in the O.tauri/OtV system. When taking into account serial transfer (i.e. batchcycle lengths) and dilution rates as well as different resistance costs, our model predicts that no susceptible cells should be detected under any of the simulated conditions – this is consistent with laboratory findings. We thus considered an alternative model that is not used in laboratory experiments, but which incorporates one key process in natural populations: host populations are periodically re-seeded with new infective viruses. In this model, susceptible individuals re-occurred in the population, despite low costs of resistance. This suggests that periodic attack by new viruses, rather than (or in addition to) costs of resistance, may explain the high proportion of susceptible hosts in natural populations, and underlie the discrepancy between laboratory studies and observations of fresh isolates.ImportanceIn natural samples of Ostreococcus sp. and its associated viruses, susceptible hosts are common. However, in laboratory experiments, fully resistant host populations readily and irreversibly evolve. Laboratory experiments are powerful methods for studying process because they offer a stripped-down simplification of a complex system, but this simplification may be an oversimplification for some questions. For example, laboratory and field systems of marine microbes and their viruses differ in population sizes and dynamics, mixing or migration rates, and species diversity, all of which can dramatically alter process outcomes. We demonstrate the utility of using epidemiological models to explore experimental design and to understand mechanisms underlying host-virus population dynamics. We highlight that such models can be used to form strong, testable hypotheses about which key elements of natural systems need to be included in laboratory systems to make them simplified, rather than oversimplified, versions of the processes we use them to study.


Crustaceana ◽  
2019 ◽  
Vol 92 (3) ◽  
pp. 257-267 ◽  
Author(s):  
Sandra-Florina Lele ◽  
Lucian Pârvulescu

Abstract Heterochely is an important feature in some marine decapod crustaceans, but it is seldom investigated in freshwater crayfish. In this study, we applied a biometrical analysis targeting wild populations of three European crayfish species, Astacus leptodactylus, Astacus astacus, and Austropotamobius torrentium, as well as one invasive North American species, Faxonius limosus. Field data were combined with video-recorded observations to understand the usage of chelae in laboratory experiments for A. leptodactylus and F. limosus. According to biometrical measurements, heterochely was evenly distributed between species and sexes in wild populations, leading to the assumption that there is no specific pattern in chela size. Moreover, we found that the ambidextrous usage of chelae is a commonly encountered behaviour in crayfish, since no significant relationship was found between their chelae and asymmetry. This behaviour could maximize the chances of survival for crayfish in general, since losing one or both chelae is often recorded in the wild.


Author(s):  
Gil G. Rosenthal

Studies of mating outcomes range from behavioral observations of social affiliation in the wild, to laboratory experiments where individual choosers and courters are paired in isolation. However, mating outcomes do not tell us much about mating preferences. In order to understand what is going on inside the heads and bodies of choosers, we need to measure not only the mate choices of choosers—how choosers discriminate among actual mates—but also the underlying preferences: choosers' internal representation of courter traits. This chapter begins by discussing how mating outcomes are measured. It then presents a conceptual framework for thinking about how preferences are structured, followed by a discussion of the options for empirically measuring mating preferences and the pitfalls associated with each approach.


Sign in / Sign up

Export Citation Format

Share Document