scholarly journals Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks

2014 ◽  
Vol 281 (1788) ◽  
pp. 20140773 ◽  
Author(s):  
Matthias Albrecht ◽  
Benigno Padrón ◽  
Ignasi Bartomeus ◽  
Anna Traveset

Compartmentalization—the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)—has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant–pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that—rather than displacing native species from the network—plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant–pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes.

2015 ◽  
Author(s):  
Ignasi Bartomeus ◽  
Jochen Fründ ◽  
Neal M. Williams

Entomophilous exotic plant species not only compete directly for space and light with other plants, but also offer resource opportunities for the native pollinator community. Most research on this topic to date has taken the plant perspective, focusing on how successful plant invaders integrate into the native plant-pollinator interaction networks. However, species specific responses of pollinators to the addition of exotic plants are rarely taken into account. We show here that while some bumble bees and other trophic generalist bees can benefit from exotic plant invasions, other species can be negatively affected. Behavioral flexibility may be the key to persist in a changing world.


Author(s):  
Johannes J. le Roux

Abstract Microbes are omnipresent, yet their interactions with invasive plants remain understudied. This is surprising, given the importance of microbes in plant community ecology and their influence on plant performance in new environments. Recent advances in molecular genetic approaches have opened the door to studying this unseen majority in great detail and to understand how they fit into ecological interaction networks. Molecular approaches allow rapid assessments of microbial diversity at reasonable cost while providing both taxonomic and evolutionary information. Here I discuss how these approaches have contributed to a better understanding of plant-microbial interactions in the context of biological invasions. By drawing insights from various case studies, I illustrate how next-generation sequencing (DNA barcoding) has revolutionized the way we understand such interactions. Tight-knit and coevolved mutualist (e.g. mycorrhizal) and antagonist (e.g. pathogen) interactions appear particularly promising to understand the structure and function of invasive plant-microbial interaction networks, the impacts of invasive plants on native networks and the vulnerability of native networks to infiltration by non-native species. I also discuss novel ways in which molecular data can aid the study of invasive plant-microbial interactions, such as incorporating phylogenetic data into network analyses to better understand the role of evolutionary history in network dynamics and how such dynamics respond to plant invasions. DNA barcoding of microbes also presents unique challenges to the study of network ecology, such as uncertainty in the legitimacy and efficiency of interactions. Future research should incorporate overall plant-associated microbial communities (microbiomes) into interaction networks to better understand the role microbes play during plant invasions.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 528 ◽  
Author(s):  
Gilberto Corso ◽  
Gabriel M. F. Ferreira ◽  
Thomas M. Lewinsohn

Entropy-based indices are long-established measures of biological diversity, nowadays used to gauge partitioning of diversity at different spatial scales. Here, we tackle the measurement of diversity of interactions among two sets of organisms, such as plants and their pollinators. Actual interactions in ecological communities are depicted as bipartite networks or interaction matrices. Recent studies concentrate on distinctive structural patterns, such as nestedness or modularity, found in different modes of interaction. By contrast, we investigate mutual information as a general measure of structure in interactive networks. Mutual information (MI) measures the degree of reciprocal matching or specialization between interacting organisms. To ascertain its usefulness as a general measure, we explore (a) analytical solutions for different models; (b) the response of MI to network parameters, especially size and occupancy; (c) MI in nested, modular, and compound topologies. MI varies with fundamental matrix parameters: dimension and occupancy, for which it can be adjusted or normalized. Apparent differences among topologies are contingent on dimensions and occupancy, rather than on topological patterns themselves. As a general measure of interaction structure, MI is applicable to conceptually and empirically fruitful analyses, such as comparing similar ecological networks along geographical gradients or among interaction modalities in mutualistic or antagonistic networks.


2021 ◽  
pp. 1-10
Author(s):  
S. Christopher Marble ◽  
Stephen H. Brown

Plant invasions pose a serious threat to biodiversity, agricultural production, and land value throughout the world. Due to Florida’s unique climate, population expansion, expansive coastline, and number of seaports, the state is especially vulnerable to non-native plant naturalization and spread. Invasive plant management programs were shown to have higher success rates with fewer resources when invasives were managed soon after non-native plants were observed. However, some newly emerging invasive plants may go undetected due to their resemblance with native species or other invasive plants. The objective of this review is to highlight a few key invasive plants in Florida that have native lookalikes. While morphological differences are discussed, the primary goal is to discuss management implications of misidentification and delayed response times, as well as the need for plant identification guides that include information on how to distinguish problematic invasive plants from similar native species.


Author(s):  
Anna Traveset ◽  
David M. Richardson

Abstract Diverse biotic interactions between non-native plant species and other species from all taxonomic groups are crucial mediators of the dynamics of plant invasions. This chapter reviews the key hypotheses in invasion ecology that invoke biotic interactions to explain aspects of plant invasion dynamics. We examine the historical context of these hypotheses and assess the evidence for accepting or rejecting their predictions. Most hypotheses invoke antagonistic interactions, mainly competition, predation, herbivory interactions and the role of pathogens. Only in the last two decades have positive (facilitative/mutualistic) interactions been explicitly included in invasion biology theory (as in ecological theory in general). Much information has accumulated in testing hypotheses relating to biotic resistance and Enemy Release Theory, although many of the emerging generalizations are still contentious. There is growing consensus that other drivers of plant invasion success, such as propagule pressure and disturbance, mediate the outcome of biotic interactions, thereby complicating our ability to make predictions, but these have rarely been assessed in both native and adventive ranges of non-native invasive species. It is also widely acknowledged that biogeographic comparisons, more than common garden experiments, are needed to shed light on many of the contradictory results. Contrasting findings have also emerged in exploring the roles of positive interactions. Despite strong evidence that such interactions are crucial in many communities, more work is needed to elucidate the factors that influence the relative importance of positive and negative interactions in different ecosystems. Different types of evidence in support of invasional meltdown have emerged for diverse habitats and across spatial scales. In light of increasing evidence that biotic indirect effects are crucial determinants of the structure, dynamics and evolution of ecological communities, both direct and indirect interactions involving native and non-native species must be considered to determine how they shape plant invasion patterns and the ecological impacts of non-native species on recipient communities. Research that examines both biotic interactions and the factors that mediate their strength and alter interaction outcomes is needed to improve our ability to predict the effects of novel interactions between native and non-native species, and to envisage how existing invaded communities will respond to changing environmental conditions. Many opportunities exist for manipulating biotic interactions as part of integrated control strategies to reduce the extent, density and impacts of non-native plant invasions. These include the introduction of species from the native range of the non-native plant for biological control, diverse manipulations of plant - herbivore interactions and many types of interaction to enhance biotic resistance and steer vegetation recovery following non-native plant control.


2012 ◽  
Vol 5 (1) ◽  
pp. 125-136 ◽  
Author(s):  
Valerie T. Eviner ◽  
Kelly Garbach ◽  
Jill H. Baty ◽  
Sarah A. Hoskinson

AbstractPlant invasions can have large effects on ecosystem services. Some plant invaders were introduced specifically to restore key services to ecosystems, and other invaders are having unintended, detrimental effects on services, such as the quantity and quality of water delivered, flood control, erosion control, and food production. Many ecosystem services are difficult to measure directly, and although there are extensive studies on plant invaders and ecosystem processes, a number of challenges prevent us from confidently extrapolating those processes as proxies for services. To extrapolate local, short-term measures of processes to ecosystem services, we must: (1) determine which processes are the key contributors to a service, (2) assess how multiple processes interact to provide a given service, (3) determine how vegetation types and species affect those processes, and (4) explicitly assess how ecosystem services and their controls vary over space and time, including reliance of ecosystem services on “hot spots” and “hot moments” and a minimum size of a vegetation type in the landscape. A given invader can have positive effects on some services and negative effects on others. It is important to consider that, in some systems, shifting environmental conditions may no longer support native species and that invasive species may be critical contributors to the resilience of ecosystem services.


2015 ◽  
Vol 112 (14) ◽  
pp. 4387-4392 ◽  
Author(s):  
Chris D. Thomas ◽  
G. Palmer

Plants are commonly listed as invasive species, presuming that they cause harm at both global and regional scales. Approximately 40% of all species listed as invasive within Britain are plants. However, invasive plants are rarely linked to the national or global extinction of native plant species. The possible explanation is that competitive exclusion takes place slowly and that invasive plants will eventually eliminate native species (the “time-to-exclusion hypothesis”). Using the extensive British Countryside Survey Data, we find that changes to plant occurrence and cover between 1990 and 2007 at 479 British sites do not differ between native and non-native plant species. More than 80% of the plant species that are widespread enough to be sampled are native species; hence, total cover changes have been dominated by native species (total cover increases by native species are more than nine times greater than those by non-native species). This implies that factors other than plant “invasions” are the key drivers of vegetation change. We also find that the diversity of native species is increasing in locations where the diversity of non-native species is increasing, suggesting that high diversities of native and non-native plant species are compatible with one another. We reject the time-to-exclusion hypothesis as the reason why extinctions have not been observed and suggest that non-native plant species are not a threat to floral diversity in Britain. Further research is needed in island-like environments, but we question whether it is appropriate that more than three-quarters of taxa listed globally as invasive species are plants.


Author(s):  
Johannes J. Le Roux ◽  

Microbes are omnipresent, yet their interactions with invasive plants remain understudied. This is surprising, given the importance of microbes in plant community ecology and their influence on plant performance in new environments. Recent advances in molecular genetic approaches have opened the door to studying this unseen majority in great detail and to understand how they fit into ecological interaction networks. Molecular approaches allow rapid assessments of microbial diversity at reasonable cost while providing both taxonomic and evolutionary information. Here I discuss how these approaches have contributed to a better understanding of plant-microbial interactions in the context of biological invasions. By drawing insights from various case studies, I illustrate how next-generation sequencing (DNA barcoding) has revolutionized the way we understand such interactions. Tight-knit and coevolved mutualist (e.g. mycorrhizal) and antagonist (e.g. pathogen) interactions appear particularly promising to understand the structure and function of invasive plant-microbial interaction networks, the impacts of invasive plants on native networks and the vulnerability of native networks to infiltration by non-native species. I also discuss novel ways in which molecular data can aid the study of invasive plant-microbial interactions, such as incorporating phylogenetic data into network analyses to better understand the role of evolutionary history in network dynamics and how such dynamics respond to plant invasions. DNA barcoding of microbes also presents unique challenges to the study of network ecology, such as uncertainty in the legitimacy and efficiency of interactions. Future research should incorporate overall plant-associated microbial communities (microbiomes) into interaction networks to better understand the role microbes play during plant invasions.


2019 ◽  
Vol 79 (1) ◽  
pp. 15-21
Author(s):  
X. A. Liu ◽  
Y. Peng ◽  
J. J. Li ◽  
P. H. Peng

Abstract Resource amendments commonly promote plant invasions, raising concerns over the potential consequences of nitrogen (N) deposition; however, it is unclear whether invaders will benefit from N deposition more than natives. Growth is among the most fundamental inherent traits of plants and thus good invaders may have superior growth advantages in response to resource amendments. We compared the growth and allocation between invasive and native plants in different N regimes including controls (ambient N concentrations). We found that invasive plants always grew much larger than native plants in varying N conditions, regardless of growth- or phylogeny-based analyses, and that the former allocated more biomass to shoots than the latter. Although N addition enhanced the growth of invasive plants, this enhancement did not increase with increasing N addition. Across invasive and native species, changes in shoot biomass allocation were positively correlated with changes in whole-plant biomass; and the slope of this relationship was greater in invasive plants than native plants. These findings suggest that enhanced shoot investment makes invasive plants retain a growth advantage in high N conditions relative to natives, and also highlight that future N deposition may increase the risks of plant invasions.


Sign in / Sign up

Export Citation Format

Share Document