Molecular ecology of plant-microbial interactions during invasions: progress and challenges.

Author(s):  
Johannes J. le Roux

Abstract Microbes are omnipresent, yet their interactions with invasive plants remain understudied. This is surprising, given the importance of microbes in plant community ecology and their influence on plant performance in new environments. Recent advances in molecular genetic approaches have opened the door to studying this unseen majority in great detail and to understand how they fit into ecological interaction networks. Molecular approaches allow rapid assessments of microbial diversity at reasonable cost while providing both taxonomic and evolutionary information. Here I discuss how these approaches have contributed to a better understanding of plant-microbial interactions in the context of biological invasions. By drawing insights from various case studies, I illustrate how next-generation sequencing (DNA barcoding) has revolutionized the way we understand such interactions. Tight-knit and coevolved mutualist (e.g. mycorrhizal) and antagonist (e.g. pathogen) interactions appear particularly promising to understand the structure and function of invasive plant-microbial interaction networks, the impacts of invasive plants on native networks and the vulnerability of native networks to infiltration by non-native species. I also discuss novel ways in which molecular data can aid the study of invasive plant-microbial interactions, such as incorporating phylogenetic data into network analyses to better understand the role of evolutionary history in network dynamics and how such dynamics respond to plant invasions. DNA barcoding of microbes also presents unique challenges to the study of network ecology, such as uncertainty in the legitimacy and efficiency of interactions. Future research should incorporate overall plant-associated microbial communities (microbiomes) into interaction networks to better understand the role microbes play during plant invasions.

Author(s):  
Johannes J. Le Roux ◽  

Microbes are omnipresent, yet their interactions with invasive plants remain understudied. This is surprising, given the importance of microbes in plant community ecology and their influence on plant performance in new environments. Recent advances in molecular genetic approaches have opened the door to studying this unseen majority in great detail and to understand how they fit into ecological interaction networks. Molecular approaches allow rapid assessments of microbial diversity at reasonable cost while providing both taxonomic and evolutionary information. Here I discuss how these approaches have contributed to a better understanding of plant-microbial interactions in the context of biological invasions. By drawing insights from various case studies, I illustrate how next-generation sequencing (DNA barcoding) has revolutionized the way we understand such interactions. Tight-knit and coevolved mutualist (e.g. mycorrhizal) and antagonist (e.g. pathogen) interactions appear particularly promising to understand the structure and function of invasive plant-microbial interaction networks, the impacts of invasive plants on native networks and the vulnerability of native networks to infiltration by non-native species. I also discuss novel ways in which molecular data can aid the study of invasive plant-microbial interactions, such as incorporating phylogenetic data into network analyses to better understand the role of evolutionary history in network dynamics and how such dynamics respond to plant invasions. DNA barcoding of microbes also presents unique challenges to the study of network ecology, such as uncertainty in the legitimacy and efficiency of interactions. Future research should incorporate overall plant-associated microbial communities (microbiomes) into interaction networks to better understand the role microbes play during plant invasions.


2012 ◽  
Vol 5 (2) ◽  
pp. 194-208 ◽  
Author(s):  
Emily J. Kapler ◽  
Janette R. Thompson ◽  
Mark P. Widrlechner

AbstractConservation and land management decisions often are based primarily on natural science, but could be more successful if human influences were effectively integrated into decision making. This is especially true for efforts to manage invasive plants, whose arrival is usually the product of deliberate human introduction. Risk-assessment models that predict the probability that a nonnative plant will naturalize or invade are useful tools for managing invasive plants. However, decisions based on such models could affect stakeholders differently. Careful assessment of risk-analysis methodologies should consider the importance of stakeholder participation. We surveyed the perceptions of four stakeholder groups (conservation professionals, master gardeners, professional horticulturists, and woodland landowners) in Iowa about invasive plants, general management approaches, and risk-assessment models. We also examined whether or not a stakeholder's nature relatedness plays a role in shaping his or her responses. Stakeholder perceptions varied less than expected across all four groups. Eighty-seven percent of respondents agreed invasive plants are a problem, and 88.4% agreed that we have a responsibility to manage them to protect natural areas. Support for the use of risk-assessment models also was high, with 78.7% of respondents agreeing that their use has potential to prevent plant invasions. Nature relatedness scores for all groups were correlated with respondent perspectives on invasive plants. Respondents believed biologically significant error rates (errors that might introduce a new invasive plant) should not exceed 5 to 10%. Respondents were more tolerant of horticulturally limiting errors (errors that restrict sale/use of a plant that would not have become invasive), reporting rates of 10 to 20% as acceptable. Researchers developing risk-assessment models might wish to aim for error rates within these bounds. General agreement among these stakeholder groups suggests potential support for future risk-management efforts related to invasive plants.


2020 ◽  
Author(s):  
Meiling Wang ◽  
Xuefei Tang ◽  
Xiaoqiu Sun ◽  
Bingbing Jia ◽  
Hao Xu ◽  
...  

Abstract Background and Aims Plant invasions can change soil microbial communities and affect subsequent invasions directly or indirectly via foliar herbivory. It has been proposed that invaders promote uniform biotic communities that displace diverse, spatially variable communities (the biotic homogenization hypothesis), but this has not been experimentally tested for soil microbial communities, so the underlying mechanisms and dynamics are unclear. Here, we compared density-dependent impacts of the invasive plant Alternanthera philoxeroides and its native congener A. sessilis on soil fungal communities, and their feedback effects on plants and a foliar beetle. Methods We conducted a plant–soil feedback (PSF) experiment and a laboratory bioassay to examine PSFs associated with the native and invasive plants and a beetle feeding on them. We also characterized the soil fungal community using high-throughput sequencing. Key Results We found locally differentiated soil fungal pathogen assemblages associated with high densities of the native plant A. sessilis but little variation in those associated with the invasive congener A. philoxeroides, regardless of plant density. In contrast, arbuscular mycorrhizal fungal assemblages associated with high densities of the invasive plant were more variable. Soil biota decreased plant shoot mass but their effect was weak for the invasive plant growing in native plant-conditioned soils. PSFs increased the larval biomass of a beetle reared on leaves of the native plant only. Moreover, PSFs on plant shoot and root mass and beetle mass were predicted by different pathogen taxa in a plant species-specific manner. Conclusion Our results suggest that plant invasions can rapidly increase the similarity of soil pathogen assemblages even at low plant densities, leading to taxonomically and functionally homogeneous soil communities that may limit negative soil effects on invasive plants.


2014 ◽  
Vol 281 (1788) ◽  
pp. 20140773 ◽  
Author(s):  
Matthias Albrecht ◽  
Benigno Padrón ◽  
Ignasi Bartomeus ◽  
Anna Traveset

Compartmentalization—the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)—has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant–pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that—rather than displacing native species from the network—plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant–pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes.


2010 ◽  
Vol 3 (4) ◽  
pp. 470-481 ◽  
Author(s):  
Ramona Robison ◽  
Steve Schoenig ◽  
Douglas W. Johnson ◽  
Elizabeth Brusati ◽  
Joseph M. DiTomaso

AbstractThis project summarizes the opinion of 52 experts on the future research needs in the area of invasive plants in California. Experts included academics at private and public universities, Cooperative Extension educators, land managers, members of nongovernmental organizations (NGOs), employees of restoration companies, and federal, state, and local agency personnel. Surveys were conducted through in-person interviews, written questionnaires, and workshops. The objective was to identify high-priority needs for future research on issues related to invasive plants in California's wildlands. More specifically, the goals were to (1) create a forum for assessing high-priority research needs, (2) guide future research toward these high-priority needs, and (3) facilitate connections and interactions among academic disciplines and between researchers and practitioners by increasing awareness of the range of ongoing research on invasive plants. Priority needs were chosen for 10 broad research topic areas, with specific subtopics addressed within each of these areas. In addition to noting specific research areas, there was a general need expressed for a synthesis of existing scientific information, particularly about the biology and ecology of invasive plants and the ecological impacts, control and management tools, restoration activities, and related social issues surrounding invasive plants. A mutual exchange of information was also considered important among the academic researcher and the field practitioner, as was the development of more effective training programs for land managers.


2021 ◽  
pp. 1-10
Author(s):  
S. Christopher Marble ◽  
Stephen H. Brown

Plant invasions pose a serious threat to biodiversity, agricultural production, and land value throughout the world. Due to Florida’s unique climate, population expansion, expansive coastline, and number of seaports, the state is especially vulnerable to non-native plant naturalization and spread. Invasive plant management programs were shown to have higher success rates with fewer resources when invasives were managed soon after non-native plants were observed. However, some newly emerging invasive plants may go undetected due to their resemblance with native species or other invasive plants. The objective of this review is to highlight a few key invasive plants in Florida that have native lookalikes. While morphological differences are discussed, the primary goal is to discuss management implications of misidentification and delayed response times, as well as the need for plant identification guides that include information on how to distinguish problematic invasive plants from similar native species.


2006 ◽  
Vol 30 (1) ◽  
pp. 25-46 ◽  
Author(s):  
Scott Henderson ◽  
Terence P. Dawson ◽  
Robert J. Whittaker

This paper identifies the historical precedents and recent advances in descriptive and analytical aspects of invasive plant ecology. The paper takes a global perspective that focuses primarily on natural and semi-natural systems. The dynamics of plant invasions depend on the unique combination of species and recipient environments in light of short-lived, but highly influential, stochastic events. Spreading from the original point of establishment can be virtually instantaneous or follow a prolonged timelag. Range extension proceeds according to a variety of patterns dependent on the interplay between dispersal modes and landscape characteristics. The impacts of plant invasions are all-encompassing: biodiversity loss, economic impacts and aesthetic impacts occasioned by the loss of traditional cultural or natural landscapes. From the conservation perspective, costs are incalculable, but undoubtedly high. The impacts of invasive plants on natural ecosystems occur across all levels of biotic organization and, in the worst case, result in global extinctions and modification of fundamental ecosystem properties that make restoration practically impossible. Plant invasions occur across all habitat types and have spawned complementary theories, which are briefly presented within particular contexts.


Author(s):  
Kevin Faccenda ◽  
Curtis C. Daehler

AbstractGlobally, invasive plant-fueled wildfires have tremendous environmental, economical, and societal impacts, and the frequencies of wildfires and plant invasions are on an upward trend globally. Identifying which plant species tend to increase the frequency or severity of wildfire is important to help manage their impacts. We developed a screening system to identify introduced plant species that are likely to increase wildfire risk, using the Hawaiian Islands to test the system and illustrate how the system can be applied to inform management decisions. Expert-based fire risk scores derived from field experiences with 49 invasive species in Hawai′i were used to train a machine learning model that predicts expert fire risk scores from among 21 plant traits obtained from literature and databases. The model revealed that just four variables can identify species categorized as higher fire risk by experts with 90% accuracy, while low risk species were identified with 79% accuracy. We then used the predictive model to screen > 140 recently naturalized plants in Hawai′i to illustrate how the screening tool can be applied. The screening tool identified a managebly small set of species (6% of naturalizations in the last ~ 10 years) that are likely to pose a high fire risk and can be targeted for eradication or containment to reduce future wildfire risks. Because the screening system uses general plant traits that are likely relevant to fire risk in drylands around the world, it can likely be applied with minimal modification to other regions where invasive plants pose potential fire risks.


2021 ◽  
Author(s):  
Sylvie Rebuffat

This review unveils current knowledge on the complex interaction networks involving ribosomally synthesized peptides, either modified or not, being at play in microbial interactions and symbioses.


2017 ◽  
Vol 4 (1) ◽  
pp. 148-160
Author(s):  
Arjun C.P ◽  
Anoop V.K ◽  
Tijo K.J ◽  
Anoopkumar T.K ◽  
Roshnath R

Butterfly diversity was recorded from Nov (2013) - May (2014) in Pookode region. A total number of 128 species recorded from the five families; Nymphalidae (46 species) Lycaenidae (28 species), Hesperiidae (22 species), Pieridae (17 species) and Papilionidae (15 species) respectively. During the survey invasive plant species were also recorded. There were 36 species of invasive plants from 18 families identified from the study area. More butterflies were attracted towards nectar offering invasive plants. Chromolaena odorata, Ipomea cairica, Lantana camara, Merremia vitifolia, Mikania micrantha, Mimosa diplotricha, Pennisetumpolystachyon, Pteridium aquilinum, Quisqualis indica and Sphagneticola trilobata were the major invasive plants found in the Pookode region and their flower attracts butterfly for pollination. Even though nectar offered by the plants are supportive for growth, in long run these species can affect butterfly population bydeclining native host larval plant species for butterfly reproduction. Invasive species compete with the native flora and reduce its population. Management practices like physical, chemical and modern bio control measures could be used for eradicating of invasive plants. Wise use of invasive plants for other economical purpose such as bio-fuel, medicinal purpose, bio-pesticide and handicraft could be suggested. Successful management of invasive species are needed for conserving Lepidoptera fauna and other native biota of the area.


Sign in / Sign up

Export Citation Format

Share Document