scholarly journals Fluctuating seawater pH/ p CO 2 regimes are more energetically expensive than static pH/ p CO 2 levels in the mussel Mytilus edulis

2017 ◽  
Vol 284 (1865) ◽  
pp. 20171642 ◽  
Author(s):  
Stephanie Mangan ◽  
Mauricio A. Urbina ◽  
Helen S. Findlay ◽  
Rod W. Wilson ◽  
Ceri Lewis

Ocean acidification (OA) studies typically use stable open-ocean pH or CO 2 values. However, species living within dynamic coastal environments can naturally experience wide fluctuations in abiotic factors, suggesting their responses to stable pH conditions may not be reflective of either present or near-future conditions. Here we investigate the physiological responses of the mussel Mytilus edulis to variable seawater pH conditions over short- (6 h) and medium-term (2 weeks) exposures under both current and near-future OA scenarios. Mussel haemolymph pH closely mirrored that of seawater pH over short-term changes of 1 pH unit with acidosis or recovery accordingly, highlighting a limited capacity for acid–base regulation. After 2 weeks, mussels under variable pH conditions had significantly higher metabolic rates, antioxidant enzyme activities and lipid peroxidation than those exposed to static pH under both current and near-future OA scenarios. Static near-future pH conditions induced significant acid–base disturbances and lipid peroxidation compared with the static present-day conditions but did not affect the metabolic rate. These results clearly demonstrate that living in naturally variable environments is energetically more expensive than living in static seawater conditions, which has consequences for how we extrapolate future OA responses in coastal species.

2019 ◽  
Vol 286 (1897) ◽  
pp. 20182863 ◽  
Author(s):  
Stephanie Mangan ◽  
Rod W. Wilson ◽  
Helen S. Findlay ◽  
Ceri Lewis

Ocean acidification (OA) studies to date have typically used stable open-ocean pH and CO 2 values to predict the physiological responses of intertidal species to future climate scenarios, with few studies accounting for natural fluctuations of abiotic conditions or the alternating periods of emersion and immersion routinely experienced during tidal cycles. Here, we determine seawater carbonate chemistry and the corresponding in situ haemolymph acid–base responses over real time for two populations of mussel ( Mytilus edulis ) during tidal cycles, demonstrating that intertidal mussels experience daily acidosis during emersion. Using these field data to parameterize experimental work we demonstrate that air temperature and mussel size strongly influence this acidosis, with larger mussels at higher temperatures experiencing greater acidosis. There was a small interactive effect of prior immersion in OA conditions (pH NBS 7.7/pCO 2 930 µatm) such that the haemolymph pH measured at the start of emersion was lower in large mussels exposed to OA. Critically, the acidosis induced in mussels during emersion in situ was greater (ΔpH approximately 0.8 units) than that induced by experimental OA (ΔpH approximately 0.1 units). Understanding how environmental fluctuations influence physiology under current scenarios is critical to our ability to predict the responses of key marine biota to future environmental changes.


2004 ◽  
Vol 23 (1) ◽  
pp. 29-34 ◽  
Author(s):  
G Kadikoylu ◽  
Z Bolaman ◽  
S Demir ◽  
M Balkaya ◽  
N Akalin ◽  
...  

Cisplatin-induced nephrotoxicity is associated with an increase in lipid peroxidation and oxygen free radicals in rat kidneys. In this study, the effects of desferrioxamine were compared to vitamin C and E on cisplatin-induced lipid peroxidation and antioxidant enzyme activities in rat kidneys. Rats were divided into five groups, with 15 Wistar rats in each group. In the control group, rats received 1 mL/100 g isotonic saline solution intraperitoneally (i.p.). In Group II, 10 mg/kg cisplatin i.p. was injected to rats. Thirty minutes before the same dosage of cisplatin administration, 100 mg/kg i.p. vitamin C or E was given to rats in groups III and IV, respectively. Rats in Group V received 250 mg/kg desferrioxamine i.p., before the same dose of cisplatin administration. All rats were killed by cervical dislocation after 72 hours. The kidneys were immediately removed and washed in cold saline. Spectrophotometric method was used for all analyses. While catalase, glutathione reductase (GR), and super oxide dismutase (SOD) levels were found to be significantly decreased (P B < 0.001), malondialdehyde (MDA) (P < 0.05) and hydrogen peroxide (H2O2) (P < 0.001) levels were significantly increased in the cisplatin group when compared to the controls. MDA levels were decreased by desferrioxamine (P < 0.005) as well as vitamin C and E (P < 0.05 and P < 0.001, respectively). These three compounds induced a significant increase in SOD levels (P B < 0.05), but only in the vitamin C group, were SOD levels not significantly different than the levels of the controls (P > 0.05). In the desferrioxamine (P < 0.05), vitamin C and E groups (P < 0.001 for both), the cisplatin elevated H2O2 levels were decreased. None of these drugs had any effect on GR and catalase levels (P > 0.05). Desferrioxamine is useful to prevent cisplatin-induced lipid peroxidation, however, vitamin C and E are more effective on antioxidant enzymes than desferrioxamine.


Author(s):  
Krzysztof Gwoździński ◽  
Marta Gonciarz ◽  
Ewa Kilańczyk ◽  
Aleksandra Kowalczyk ◽  
Anna Pieniążek ◽  
...  

Antioxidant enzyme activities and lipid peroxidation inIn the present work we have studied some of the indicators of oxidative damage of the digestive gland tissue of two populations of mussels


Sign in / Sign up

Export Citation Format

Share Document