scholarly journals Frequency dependence shapes the adaptive landscape of imperfect Batesian mimicry

2018 ◽  
Vol 285 (1876) ◽  
pp. 20172786 ◽  
Author(s):  
Susan D. Finkbeiner ◽  
Patricio A. Salazar ◽  
Sofía Nogales ◽  
Cassidi E. Rush ◽  
Adriana D. Briscoe ◽  
...  

Despite more than a century of biological research on the evolution and maintenance of mimetic signals, the relative frequencies of models and mimics necessary to establish and maintain Batesian mimicry in natural populations remain understudied. Here we investigate the frequency-dependent dynamics of imperfect Batesian mimicry, using predation experiments involving artificial butterfly models. We use two geographically distinct populations of Adelpha butterflies that vary in their relative frequencies of a putatively defended model ( Adelpha iphiclus ) and Batesian mimic ( Adelpha serpa ). We found that in Costa Rica, where both species share similar abundances, Batesian mimicry breaks down, and predators more readily attack artificial butterfly models of the presumed mimic, A. serpa . By contrast, in Ecuador, where A. iphiclus (model) is significantly more abundant than A. serpa (mimic), both species are equally protected from predation. Our results provide compelling experimental evidence that imperfect Batesian mimicry is frequency-dependent on the relative abundance of models and mimics in natural populations, and contribute to the growing body of evidence that complex dynamics, such as seasonality or the availability of alternative prey, influence the evolution of mimetic traits.

2016 ◽  
Vol 2 (11) ◽  
pp. e1601335 ◽  
Author(s):  
Jorge F. Mejias ◽  
John D. Murray ◽  
Henry Kennedy ◽  
Xiao-Jing Wang

Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.


2021 ◽  
Author(s):  
Curtis M Lively ◽  
Julie Xu ◽  
Frida Ben-Ami

Parasite-mediated selection is thought to maintain host genetic diversity for resistance. We might thus expect to find a strong positive correlation between host genetic diversity and infection prevalence across natural populations. Here we used computer simulations to examine host-parasite coevolution in 20 simi-isolated clonal populations across a broad range of values for both parasite virulence and parasite fecundity. We found that the correlation between host genetic diversity and infection prevalence can be significantly positive for intermediate values of parasite virulence and fecundity. But the correlation can also be weak and statistically non-significant, even when parasite-mediated frequency-dependent selection is the sole force maintaining host diversity. Hence correlational analyses of field populations, while useful, might underestimate the role of parasites in maintaining host diversity.


2019 ◽  
Vol 116 (15) ◽  
pp. 7397-7402 ◽  
Author(s):  
Mark Pagel ◽  
Mark Beaumont ◽  
Andrew Meade ◽  
Annemarie Verkerk ◽  
Andreea Calude

A puzzle of language is how speakers come to use the same words for particular meanings, given that there are often many competing alternatives (e.g., “sofa,” “couch,” “settee”), and there is seldom a necessary connection between a word and its meaning. The well-known process of random drift—roughly corresponding in this context to “say what you hear”—can cause the frequencies of alternative words to fluctuate over time, and it is even possible for one of the words to replace all others, without any form of selection being involved. However, is drift alone an adequate explanation of a shared vocabulary? Darwin thought not. Here, we apply models of neutral drift, directional selection, and positive frequency-dependent selection to explain over 417,000 word-use choices for 418 meanings in two natural populations of speakers. We find that neutral drift does not in general explain word use. Instead, some form of selection governs word choice in over 91% of the meanings we studied. In cases where one word dominates all others for a particular meaning—such as is typical of the words in the core lexicon of a language—word choice is guided by positive frequency-dependent selection—a bias that makes speakers disproportionately likely to use the words that most others use. This bias grants an increasing advantage to the common form as it becomes more popular and provides a mechanism to explain how a shared vocabulary can spontaneously self-organize and then be maintained for centuries or even millennia, despite new words continually entering the lexicon.


1972 ◽  
Vol 182 (1067) ◽  
pp. 109-143 ◽  

A population is exposed to disruptive selection if more than one phenotype has optimal fitness and intermediate phenotypes have lower fitnesses. Maintenance of the two or more optima may depend upon their relative fitnesses being frequency dependent. Such selection may be expected in two contrasting types of situation. First the two or more optimal phenotypes may depend on one another as do the two sexes in a bisexual species. Secondly the optima may be set by heterogeneity of the environment. Then we may think in terms of a mosaic of ecological niches or a clinal situation, and may expect that gene flow will tend to promote convergence of the sub-populations while disruptive selection tends to promote their divergence. Disruptive selection may therefore be relevant both to the evolution and maintenance of polymorphisms and to the divergence of parts of populations one from another, under the influence of variation of ecological conditions within the range of gametic and/or zygotic dispersal. Disruptive selection has been shown to be capable of increasing phenotypic and genetic variance, of producing and maintaining polymorphisms, of causing divergence of sub-populations between which substantial gene exchange occurs, and of splitting a population into two which are genetically isolated from one another. These results are reviewed and their relevance to natural populations discussed.


2017 ◽  
Vol 114 (31) ◽  
pp. 8325-8329 ◽  
Author(s):  
Mathieu Chouteau ◽  
Violaine Llaurens ◽  
Florence Piron-Prunier ◽  
Mathieu Joron

Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata. Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata. The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.


1990 ◽  
Vol 330 (1257) ◽  
pp. 141-150 ◽  

This paper reviews a series of approaches to the study of density dependence, regulation and variability in terrestrial animals, by using single-species, multispecies and life table time series data. Special emphasis is given to the degree of density dependence in the level of variability, which is seldom discussed in this context, but which is conceptually related to population regulation. Broad patterns in density dependence, regulation and variability in vertebrates and arthropods are described, with some more specific results for moths and aphids. Vertebrates have generally less variable populations than arthropods, which is the only well documented, consistent pattern in population variability. The degree of density dependence of variability is negatively correlated with the average level of variability, suggesting that generally the more regulated populations are less variable. Most population studies, especially on insects, have involved outbreak species with complex dynamics, which may explain the common failures to detect density dependence in natural populations. In British moths, density dependence is less obvious in the more abundant species. The study of uncommon and rare species remains a major challenge for population ecology.


1995 ◽  
Vol 25 (12) ◽  
pp. 2010-2021 ◽  
Author(s):  
Chang-Yi Xie ◽  
Cheng C. Ying

The genetic architecture and adaptive landscape of interior lodgepole pine (Pinuscontorta ssp. latifolia Engelm. ex S. Wats.) in Canada were investigated in a provenance–family plantation located in central British Columbia. Fifty-three natural populations were sampled from three geographic regions covering the entire Canadian range, and their performance in growth and survival was recorded periodically over 20 years. Test results indicate that genetic variation among regions and among populations within regions was highly significant in all the traits investigated and accounted for, respectively, 53% and 41% of the total genetic variation in growth and 41% and 54% in survival. Within-population variation was also significant in growth but not in survival. Interior lodgepole pine in the central region demonstrated less genetic variation than in the northern and southern regions at both the population and family levels. In addition, the proportion of genetic variation associated with population was lower in the central region than in the other regions. Population differentiation in both growth and survival showed discernible elevational and geographic patterns. Regression models describing these adaptive patterns accounted for more than 80% of the among-population variation, and their veracity was verified with independent data. Populations of northern, coastal–interior transition, and high-elevation origin tended to have smaller trees with higher mortality. However, the patterns were not linear but differed in slope and (or) direction among regions. The adaptedness of populations tended to decrease as they were farther away from their origin, with a few exceptions displaying broad adaptation across more than 3° of latitude. As the test proceeded, population differentiation became more evident and adaptive clines became steeper. Some practical implications of these findings have been discussed.


2016 ◽  
Author(s):  
Jorge F. Mejias ◽  
John D. Murray ◽  
Henry Kennedy ◽  
Xiao-Jing Wang

AbstractInteractions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding predictive coding, executive control and a gamut of other brain functions. The underlying circuit mechanism, however, remains poorly understood and represents a major challenge in neuroscience. In the present work we tackled this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intra-laminar, inter-laminar, inter-areal and whole cortex) scales. The model was tested by reproducing, and shedding insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas: feedforward pathways are associated with enhanced gamma (30-70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low beta (8-15 Hz) oscillations. We found that in order for the model to account for the experimental observations, the feedback projection needs to predominantly target infragranular layers in a target area, which leads to a proposed circuit substrate for predictive coding. The model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of inter-areal signaling, as reported in recent monkey and human experiments. Taken together, this work highlights the importance of multi-scale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.


2019 ◽  
Vol 30 (6) ◽  
pp. 1672-1681 ◽  
Author(s):  
Jennifer J Valvo ◽  
F Helen Rodd ◽  
Kimberly A Hughes

Abstract How genetic variation is maintained in ecologically important traits is a central question in evolutionary biology. Male Trinidadian guppies, Poecilia reticulata, exhibit high genetic diversity in color patterns within populations, and field and laboratory studies implicate negative frequency-dependent selection in maintaining this variation. However, behavioral and ecological processes that mediate this selection in natural populations are poorly understood. We evaluated female mate preference in 11 natural guppy populations, including paired populations from high- and low-predation habitats, to determine if this behavior is responsible for negative frequency-dependent selection and to evaluate its prevalence in nature. Females directed significantly more attention to males with rare and unfamiliar color patterns than to males with common patterns. Female attention also increased with the area of male orange coloration, but this preference was independent of the preference for rare and unfamiliar patterns. We also found an overall effect of predation regime; females from high-predation populations directed more attention toward males than those from low-predation populations. Again, however, the habitat-linked preference was statistically independent from the preference for rare and unfamiliar patterns. Because previous research indicates that female attention to males predicts male mating success, we conclude that the prevalence of female preference for males with rare and unfamiliar color patterns across many natural populations supports the hypothesis that female preference is an important process underlying the maintenance of high genetic variation in guppy color patterns.


Sign in / Sign up

Export Citation Format

Share Document