scholarly journals Sustained effects of prior red light on pupil diameter and vigilance during subsequent darkness

2018 ◽  
Vol 285 (1883) ◽  
pp. 20180989 ◽  
Author(s):  
Wisse P. van der Meijden ◽  
Bart H. W. te Lindert ◽  
Jennifer R. Ramautar ◽  
Yishul Wei ◽  
Joris E. Coppens ◽  
...  

Environmental light can exert potent effects on physiology and behaviour, including pupil size, vigilance and sleep. Previous work showed that these non-image forming effects can last long beyond discontinuation of short -wavelength light exposure. The possible functional effects after switching off long -wavelength light, however, have been insufficiently characterized. In a series of controlled experiments in healthy adult volunteers, we evaluated the effects of five minutes of intense red light on physiology and performance during subsequent darkness. As compared to prior darkness, prior red light induced a subsequent sustained pupil dilation. Prior red light also increased subsequent heart rate and heart rate variability when subjects were asked to perform a sustained vigilance task during the dark exposure. While these changes suggest an increase in the mental effort required for the task, it could not prevent a post-red slowing of response speed. The suggestion that exposure to intense red light affects vigilance during subsequent darkness, was confirmed in a controlled polysomnographic study that indeed showed a post-red facilitation of sleep onset. Our findings suggest the possibility of using red light as a nightcap.

SLEEP ◽  
2021 ◽  
Author(s):  
Stuart A Knock ◽  
Michelle Magee ◽  
Julia E Stone ◽  
Saranea Ganesan ◽  
Megan D Mulhall ◽  
...  

Abstract Study Objectives The study aimed to, for the first time, (i) compare sleep, circadian phase, and alertness of Intensive Care Unit (ICU) nurses working rotating shifts with those predicted by a model of arousal dynamics; and (ii) investigate how different environmental constraints affect predictions and agreement with data. Methods The model was used to simulate individual sleep-wake cycles, urinary 6-sulphatoxymelatonin (aMT6s) profiles, subjective sleepiness on the Karolinska Sleepiness Scale (KSS), and performance on a Psychomotor Vigilance Task (PVT) of 21 ICU nurses working day, evening, and night shifts. Combinations of individual shift schedules, forced wake time before/after work and lighting, were used as inputs to the model. Predictions were compared to empirical data. Simulations with self-reported sleep as an input were performed for comparison. Results All input constraints produced similar prediction for KSS, with 56-60% of KSS scores predicted within ±1 on a day and 48-52% on a night shift. Accurate prediction of an individual’s circadian phase required individualised light input. Combinations including light information predicted aMT6s acrophase within ±1 h of the study data for 65% and 35-47% of nurses on diurnal and nocturnal schedules. Minute-by-minute sleep-wake state overlap between the model and the data was between 81±6% and 87±5% depending on choice of input constraint. Conclusions The use of individualised environmental constraints in the model of arousal dynamics allowed for accurate prediction of alertness, circadian phase and sleep for more than half of the nurses. Individual differences in physiological parameters will need to be accounted for in the future to further improve predictions.


2015 ◽  
Vol 18 (1) ◽  
pp. 90-100 ◽  
Author(s):  
Mariana G. Figueiro ◽  
Levent Sahin ◽  
Brittany Wood ◽  
Barbara Plitnick

Rotating-shift workers, particularly those working at night, are likely to experience sleepiness, decreased productivity, and impaired safety while on the job. Light at night has been shown to have acute alerting effects, reduce sleepiness, and improve performance. However, light at night can also suppress melatonin and induce circadian disruption, both of which have been linked to increased health risks. Previous studies have shown that long-wavelength (red) light exposure increases objective and subjective measures of alertness at night, without suppressing nocturnal melatonin. This study investigated whether exposure to red light at night would not only increase measures of alertness but also improve performance. It was hypothesized that exposure to both red (630 nm) and white (2,568 K) lights would improve performance but that only white light would significantly affect melatonin levels. Seventeen individuals participated in a 3-week, within-subjects, nighttime laboratory study. Compared to remaining in dim light, participants had significantly faster reaction times in the GO/NOGO test after exposure to both red light and white light. Compared to dim light exposure, power in the alpha and alpha-theta regions was significantly decreased after exposure to red light. Melatonin levels were significantly suppressed by white light only. Results show that not only can red light improve measures of alertness, but it can also improve certain types of performance at night without affecting melatonin levels. These findings could have significant practical applications for nurses; red light could help nurses working rotating shifts maintain nighttime alertness, without suppressing melatonin or changing their circadian phase.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A68-A69
Author(s):  
A Shechter ◽  
K A Quispe ◽  
J S Mizhquiri Barbecho ◽  
L Falzon

Abstract Introduction Sleep and circadian physiology are influenced by external light, particularly within the short-wavelength portion of the visible spectrum (~450–480 nm). Most personal light-emitting electronic devices (e.g., tablets, smartphones, computers) are enriched in this so-called “blue” light. Interventions to reduce short-wavelength light exposure to the eyes before bedtime may help mitigate adverse effects of light-emitting electronic devices on sleep. Methods We conducted a meta-analysis of intervention studies on the effects of wearing color-tinted lenses (e.g., orange or amber) in frames in the evening before sleep to selectively filter short-wavelength light exposure to the eyes. Outcomes were self-reported or objective (wrist-accelerometer) measures of nocturnal sleep. Databases (MEDLINE, EMBASE, Cochrane Library, PsycINFO, CINAHL, AMED) were searched from inception to November 2019. PROSPERO Registration: CRD42018105854. Results Ten studies were identified (7 randomized controlled trials; 3 before-after studies). Findings of individual studies were inconsistent, with some showing benefit and others showing no effect of intervention. For objective sleep onset latency, there was a significant modest-sized combined effect (Hedge’s g=-0.52, 95% CI: -1.27-0.24, Z=-2.94, p=0.003, I2=16.6%, k=3). There was a minor but non-statistically significant combined effect for objective sleep efficiency (Hedge’s g=0.24, 95% CI: -0.16–0.64, Z=1.69, p=0.09, I2=23.7%, k=5). There were no significant combined effects for objective measures of total sleep time and wake after sleep onset. For self-reported total sleep time, there was a statistically significant medium-sized combined effect (Hedge’s g=0.61, 95% CI: 0.14–1.09, Z=5.56, p<0.01, I2=0%, k=3). Conclusion There is mixed evidence that this approach can improve sleep. Relatively few studies have been conducted, and most did not assess light levels or melatonin. The “blue-blocker” intervention may be particularly useful in individuals with insomnia, delayed sleep phase syndrome, or attention-deficit hyperactive disorder. Considering the ubiquitousness of short wavelength-enriched light sources and the potential for widespread sleep disturbance, future controlled studies examining the efficacy of this approach to improve sleep are warranted. Support N/A


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 678 ◽  
Author(s):  
Magdalena Prusik ◽  
Bogdan Lewczuk

The aim of this study was to characterize the diurnal rhythm of plasma melatonin (MLT) concentration and its regulation by light and endogenous oscillators in 10-week-old domestic turkeys. Three experiments were performed to examine (i) the course of daily changes in plasma MLT concentration in turkeys kept under a 12 h light: 12 h dark (12L:12D) cycle; (ii) the influence of night-time light exposure lasting 0.5, 1, 2, or 3 h on the plasma MLT level; and (iii) the occurrence of circadian fluctuations in plasma MLT levels in birds kept under continuous dim red light and the ability of turkeys to adapt their pineal secretory activity to a reversed light-dark cycle (12D:12L). The plasma MLT concentration was measured with a direct radioimmunoassay. The plasma MLT concentration in turkeys kept under a 12L:12D cycle changed significantly in a daily rhythm. It was low during the photophase and increased stepwise after the onset of darkness to achieve the maximal level in the middle of the scotophase. Next, it decreased during the second half of the night. The difference between the lowest level of MLT and the highest level was approximately 18-fold. The exposure of turkeys to light during the scotophase caused a rapid, large decrease in plasma MLT concentration. The plasma MLT concentration decreased approximately 3- and 10-fold after 0.5 and 1 h of light exposure, respectively, and reached the day-time level after 2 h of exposure. In turkeys kept under continuous darkness, the plasma MLT level was approximately 2.5-fold higher at 02:00 h than at 14:00 h. In birds kept under 12D:12L, the plasma MLT level was significantly higher at 14:00 h than at 02:00 h. The results showed that plasma MLT concentrations in 10-week-old turkeys have a prominent diurnal rhythm, which is endogenously generated and strongly influenced by environmental light.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5242
Author(s):  
Jolene Ziyuan Lim ◽  
Alexiaa Sim ◽  
Pui Wah Kong

The aim of this review is to investigate the common wearable devices currently used in field hockey competitions, and to understand the hockey-specific parameters these devices measure. A systematic search was conducted by using three electronic databases and search terms that included field hockey, wearables, accelerometers, inertial sensors, global positioning system (GPS), heart rate monitors, load, performance analysis, player activity profiles, and competitions from the earliest record. The review included 39 studies that used wearable devices during competitions. GPS units were found to be the most common wearable in elite field hockey competitions, followed by heart rate monitors. Wearables in field hockey are mostly used to measure player activity profiles and physiological demands. Inconsistencies in sampling rates and performance bands make comparisons between studies challenging. Nonetheless, this review demonstrated that wearable devices are being used for various applications in field hockey. Researchers, engineers, coaches, and sport scientists can consider using GPS units of higher sampling rates, as well as including additional variables such as skin temperatures and injury associations, to provide a more thorough evaluation of players’ physical and physiological performances. Future work should include goalkeepers and non-elite players who are less studied in the current literature.


2021 ◽  
pp. 108705472097279
Author(s):  
Alessio Bellato ◽  
Iti Arora ◽  
Puja Kochhar ◽  
Chris Hollis ◽  
Madeleine J. Groom

We investigated autonomic arousal, attention and response conflict, in ADHD and autism. Heart rate variability (HRV), and behavioral/electrophysiological indices of performance, were recorded during a task with low and high levels of response conflict in 78 children/adolescents (7–15 years old) with ADHD, autism, comorbid ADHD+autism, or neurotypical. ANOVA models were used to investigate effects of ADHD and autism, while a mediation model was tested to clarify the relationship between ADHD and slower performance. Slower and less accurate performance characterized ADHD and autism; however, atypical electrophysiological indices differently characterized these conditions. The relationship between ADHD and slower task performance was mediated by reduced HRV in response to the cue stimulus. Autonomic hypo-arousal and difficulties in mobilizing energetic resources in response to sensory information (associated with ADHD), and atypical electrophysiological indices of information processing (associated with autism), might negatively affect cognitive performance in those with ADHD+autism.


2021 ◽  
Vol 13 (14) ◽  
pp. 7895
Author(s):  
Colin Tomes ◽  
Ben Schram ◽  
Robin Orr

Police work exposes officers to high levels of stress. Special emergency response team (SERT) service exposes personnel to additional demands. Specifically, the circadian cycles of SERT operators are subject to disruption, resulting in decreased capacity to compensate in response to changing demands. Adaptive regulation loss can be measured through heart rate variability (HRV) analysis. While HRV Trends with health and performance indicators, few studies have assessed the effect of overnight shift work on HRV in specialist police. Therefore, this study aimed to determine the effects overnight shift work on HRV in specialist police. HRV was analysed in 11 SERT officers and a significant (p = 0.037) difference was found in pRR50 levels across the training day (percentage of R-R intervals varying by >50 ms) between those who were off-duty and those who were on duty the night prior. HRV may be a valuable metric for quantifying load holistically and can be incorporated into health and fitness monitoring and personnel allocation decision making.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A40-A41
Author(s):  
Isabel Schöllhorn ◽  
Oliver Stefani ◽  
Manuel Spitschan ◽  
Robert Lucas ◽  
Christian Cajochen

Abstract Introduction Light emitted from visual displays can acutely increase alertness, improve cognitive performance and suppress melatonin in the evening. Here we tested the influence of different melanopic irradiance levels emitted by a metameric display setting on alertness, vigilance and salivary melatonin levels. Methods In an ongoing study, 37 healthy, male participants have so far completed a 2-week study protocol. Volunteers were assigned to one of four luminance groups which differed in brightness levels (27 cd/m2 - 280 cd/m2). Illuminance ranged between 7 and 85 lx. Within the four groups each volunteer was exposed to a low melanopic (LM) and a high melanopic condition (HM). The LM and HM differed in melanopic irradiance (ca. 3-fold change), but matched in terms of cone excitation (metamers). Before, during and after the light exposure, volunteers performed a psychomotor vigilance task (PVT). Subjective alertness and melatonin levels were continuously measured in half-hourly intervals throughout scheduled wakefulness in the 17-h in lab study. Results Preliminary analysis yielded an overall alerting response in the HM vs. the LM condition (p<0.05) concomitant with a trend of reduced melatonin levels in HM vs. LM (p=0.08). So far, we could not observe a difference in PVT performance for HM and LM (Reaction time responses between 100 and 500 ms). Since we are still lacking statistical power in the ongoing study, we cannot yet satisfactorily interpret interaction effects between melanopic condition and brightness. Conclusion Our data indicate that rather low brightness levels of high melanopic display light impacts alertness and melatonin levels in the evening. Thus, metameric low melanopic display light may be a promising method to attenuate activating properties of evening light on circadian physiology without affecting visual appearance. Support (if any) This project is funded by the Swiss National Science Foundation (SNSF).


Proceedings ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 2
Author(s):  
Arash M. Shahidi ◽  
Theodore Hughes-Riley ◽  
Carlos Oliveira ◽  
Tilak Dias

Knitted electrodes are a key component to many electronic textiles including sensing devices, such as pressure sensors and heart rate monitors; therefore, it is essential to assess the electrical performance of these knitted electrodes under different mechanical loads to understand their performance during use. The electrical properties of the electrodes could change while deforming, due to an applied load, which could occur in the uniaxial direction (while stretched) or multiaxial direction (while compressed). The properties and performance of the electrodes could also change over time when rubbed against another surface due to the frictional force and generated heat. This work investigates the behavior of a knitted electrode under different loading conditions and after multiple abrasion cycles.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dwi Ariyanti ◽  
Kazunori Ikebukuro ◽  
Koji Sode

Abstract Background The development of multiple gene expression systems, especially those based on the physical signals, such as multiple color light irradiations, is challenging. Complementary chromatic acclimation (CCA), a photoreversible process that facilitates the control of cellular expression using light of different wavelengths in cyanobacteria, is one example. In this study, an artificial CCA systems, inspired by type III CCA light-regulated gene expression, was designed by employing a single photosensor system, the CcaS/CcaR green light gene expression system derived from Synechocystis sp. PCC6803, combined with G-box (the regulator recognized by activated CcaR), the cognate cpcG2 promoter, and the constitutively transcribed promoter, the PtrcΔLacO promoter. Results One G-box was inserted upstream of the cpcG2 promoter and a reporter gene, the rfp gene (green light-induced gene expression), and the other G-box was inserted between the PtrcΔLacO promoter and a reporter gene, the bfp gene (red light-induced gene expression). The Escherichia coli transformants with plasmid-encoded genes were evaluated at the transcriptional and translational levels under red or green light illumination. Under green light illumination, the transcription and translation of the rfp gene were observed, whereas the expression of the bfp gene was repressed. Under red light illumination, the transcription and translation of the bfp gene were observed, whereas the expression of the rfp gene was repressed. During the red and green light exposure cycles at every 6 h, BFP expression increased under red light exposure while RFP expression was repressed, and RFP expression increased under green light exposure while BFP expression was repressed. Conclusion An artificial CCA system was developed to realize a multiple gene expression system, which was regulated by two colors, red and green lights, using a single photosensor system, the CcaS/CcaR system derived from Synechocystis sp. PCC6803, in E. coli. The artificial CCA system functioned repeatedly during red and green light exposure cycles. These results demonstrate the potential application of this CCA gene expression system for the production of multiple metabolites in a variety of microorganisms, such as cyanobacteria.


Sign in / Sign up

Export Citation Format

Share Document